These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32746072)

  • 21. Adapting to the Mechanical Properties and Active Force of an Exoskeleton by Altering Muscle Synergies in Chronic Stroke Survivors.
    Rinaldi L; Yeung LF; Lam PC; Pang MYC; Tong RK; Cheung VCK
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2203-2213. PubMed ID: 32804652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T
    Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EMG-Based Real-Time Linear-Nonlinear Cascade Regression Decoding of Shoulder, Elbow, and Wrist Movements in Able-Bodied Persons and Stroke Survivors.
    Liu J; Ren Y; Xu D; Kang SH; Zhang LQ
    IEEE Trans Biomed Eng; 2020 May; 67(5):1272-1281. PubMed ID: 31425016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of new rehabilitation robot device that can be attached to the conventional Knee-Ankle-Foot-Orthosis for controlling the knee in individuals after stroke.
    Shihomi K; Koji O; Tadao T; Yuichi S; Yoshiyuki H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():304-307. PubMed ID: 28813836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. EMG-Based Continuous and Simultaneous Estimation of Arm Kinematics in Able-Bodied Individuals and Stroke Survivors.
    Liu J; Kang SH; Xu D; Ren Y; Lee SJ; Zhang LQ
    Front Neurosci; 2017; 11():480. PubMed ID: 28890685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human arm weight compensation in rehabilitation robotics: efficacy of three distinct methods.
    Just F; Özen Ö; Tortora S; Klamroth-Marganska V; Riener R; Rauter G
    J Neuroeng Rehabil; 2020 Feb; 17(1):13. PubMed ID: 32024528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Differentiable Dynamic Model for Musculoskeletal Simulation and Exoskeleton Control.
    Kuo CH; Chen JW; Yang Y; Lan YH; Lu SW; Wang CF; Lo YC; Lin CL; Lin SH; Chen PC; Chen YY
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.
    Ren Y; Wu YN; Yang CY; Xu T; Harvey RL; Zhang LQ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):589-596. PubMed ID: 27337720
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the assistive performance of an ankle exerciser using electromyographic signals.
    Saglia JA; Tsagarakis NG; Dai JS; Caldwell DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5854-8. PubMed ID: 21096923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A generalized framework to achieve coordinated admittance control for multi-joint lower limb robotic exoskeleton.
    Gui K; Liu H; Zhang D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():228-233. PubMed ID: 28813823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation.
    Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P
    J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voluntary activation failure contributes more to plantar flexor weakness than antagonist coactivation and muscle atrophy in chronic stroke survivors.
    Klein CS; Brooks D; Richardson D; McIlroy WE; Bayley MT
    J Appl Physiol (1985); 2010 Nov; 109(5):1337-46. PubMed ID: 20724561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Muscle recruitment and coordination with an ankle exoskeleton.
    Steele KM; Jackson RW; Shuman BR; Collins SH
    J Biomech; 2017 Jul; 59():50-58. PubMed ID: 28623037
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential control of reciprocal inhibition during walking versus postural and voluntary motor tasks in humans.
    Lavoie BA; Devanne H; Capaday C
    J Neurophysiol; 1997 Jul; 78(1):429-38. PubMed ID: 9242291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Study on an Exoskeleton Hand Function Training Device].
    Hu X; Zhang Y; Li J; Yi J; Yu H; He R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2016 Feb; 33(1):23-30. PubMed ID: 27382735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of an EMG-Controlled Knee Exoskeleton to Assist Home Rehabilitation in a Game Context.
    Lyu M; Chen WH; Ding X; Wang J; Pei Z; Zhang B
    Front Neurorobot; 2019; 13():67. PubMed ID: 31507400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients.
    Yeung LF; Ockenfeld C; Pang MK; Wai HW; Soo OY; Li SW; Tong KY
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():211-215. PubMed ID: 28813820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.