BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 32746104)

  • 1. Shear Induced Non-Linear Elasticity Imaging: Elastography for Compound Deformations.
    Goswami S; Ahmed R; Khan S; Doyley MM; McAleavey SA
    IEEE Trans Med Imaging; 2020 Nov; 39(11):3559-3570. PubMed ID: 32746104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear Shear Modulus Estimation With Bi-Axial Motion Registered Local Strain.
    Goswami S; Ahmed R; Doyley MM; McAleavey SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1292-1303. PubMed ID: 31150340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear strain imaging using shear deformations.
    Rao M; Varghese T; Madsen EL
    Med Phys; 2008 Feb; 35(2):412-23. PubMed ID: 18383661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography.
    Thitaikumar A; Krouskop TA; Ophir J
    Phys Med Biol; 2007 Jan; 52(1):13-28. PubMed ID: 17183125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear Wave Speed Measurements Using Crawling Wave Sonoelastography and Single Tracking Location Shear Wave Elasticity Imaging for Tissue Characterization.
    Ormachea J; Lavarello RJ; McAleavey SA; Parker KJ; Castaneda B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1351-1360. PubMed ID: 27295662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principal component analysis of shear strain effects.
    Chen H; Varghese T
    Ultrasonics; 2009 May; 49(4-5):472-83. PubMed ID: 19201435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear Wave Elasticity Imaging Using Nondiffractive Bessel Apodized Acoustic Radiation Force.
    Feng F; Goswami S; Khan S; McAleavey SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3528-3539. PubMed ID: 34236961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of bonding at an inclusion boundary using axial-shear strain elastography: a feasibility study.
    Thitaikumar A; Krouskop TA; Garra BS; Ophir J
    Phys Med Biol; 2007 May; 52(9):2615-33. PubMed ID: 17440256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plane-Wave Imaging Improves Single-Track Location Shear Wave Elasticity Imaging.
    Ahmed R; Gerber SA; McAleavey SA; Schifitto G; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1402-1414. PubMed ID: 29993543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.
    Mellema DC; Song P; Kinnick RR; Urban MW; Greenleaf JF; Manduca A; Chen S
    IEEE Trans Med Imaging; 2016 Sep; 35(9):2098-106. PubMed ID: 27076352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualizing the radial and circumferential strain distribution within vessel phantoms using synthetic-aperture ultrasound elastography.
    Korukonda S; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1639-53. PubMed ID: 22899112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coupled subsample displacement estimation method for ultrasound-based strain elastography.
    Jiang J; Hall TJ
    Phys Med Biol; 2015 Nov; 60(21):8347-64. PubMed ID: 26458219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel Receive Beamforming Improves the Performance of Focused Transmit-Based Single-Track Location Shear Wave Elastography.
    Ahmed R; Doyley MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Oct; 67(10):2057-2068. PubMed ID: 32746171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of axial compression verification to correct interpretation of axial-shear strain elastograms in breast lesions.
    Thittai AK; Galaz B; Ophir J
    Ultrason Imaging; 2010 Jul; 32(3):190-8. PubMed ID: 20718247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Non-invasive Method to Estimate the Stress-Strain Curve of Soft Tissue Using Ultrasound Elastography.
    Wang Y; Jacobson DS; Urban MW
    Ultrasound Med Biol; 2022 May; 48(5):786-807. PubMed ID: 35168849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel tissue mechanics-based method for improved motion tracking in quasi-static ultrasound elastography.
    Kheirkhah N; Dempsey S; Sadeghi-Naini A; Samani A
    Med Phys; 2023 Apr; 50(4):2176-2194. PubMed ID: 36398744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical Minimization-Based Regularized Subpixel Shear-Wave Tracking for Ultrasound Elastography.
    Horeh MD; Asif A; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Feb; 66(2):285-296. PubMed ID: 30530321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locally optimized correlation-guided Bayesian adaptive regularization for ultrasound strain imaging.
    Al Mukaddim R; Meshram NH; Varghese T
    Phys Med Biol; 2020 Mar; 65(6):065008. PubMed ID: 32028272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Strain 3-D in Vivo Breast Ultrasound Strain Elastography Using a Multi-compression Strategy and a Whole-Breast Scanning System.
    Wang Y; Bayer M; Jiang J; Hall TJ
    Ultrasound Med Biol; 2019 Dec; 45(12):3145-3159. PubMed ID: 31548103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.