These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32746113)

  • 1. Optimization for Medical Image Segmentation: Theory and Practice When Evaluating With Dice Score or Jaccard Index.
    Eelbode T; Bertels J; Berman M; Vandermeulen D; Maes F; Bisschops R; Blaschko MB
    IEEE Trans Med Imaging; 2020 Nov; 39(11):3679-3690. PubMed ID: 32746113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis and experimental validation of volume bias of soft Dice optimized segmentation maps in the context of inherent uncertainty.
    Bertels J; Robben D; Vandermeulen D; Suetens P
    Med Image Anal; 2021 Jan; 67():101833. PubMed ID: 33075643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
    Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ
    Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation.
    Yeung M; Sala E; Schönlieb CB; Rundo L
    Comput Med Imaging Graph; 2022 Jan; 95():102026. PubMed ID: 34953431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focal Boundary Dice: Improved Breast Tumor Segmentation from MRI Scan.
    Yin XX; Jian Y; Shen J; Wu J; Zhang Y; Wang W
    J Cancer; 2023; 14(5):717-736. PubMed ID: 37056389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. U-Net Architecture for Prostate Segmentation: The Impact of Loss Function on System Performance.
    Montazerolghaem M; Sun Y; Sasso G; Haworth A
    Bioengineering (Basel); 2023 Mar; 10(4):. PubMed ID: 37106600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss Weightings for Improving Imbalanced Brain Structure Segmentation Using Fully Convolutional Networks.
    Sugino T; Kawase T; Onogi S; Kin T; Saito N; Nakajima Y
    Healthcare (Basel); 2021 Jul; 9(8):. PubMed ID: 34442075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do we really need dice? The hidden region-size biases of segmentation losses.
    Liu B; Dolz J; Galdran A; Kobbi R; Ben Ayed I
    Med Image Anal; 2024 Jan; 91():103015. PubMed ID: 37918314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive t-vMF dice loss: An effective expansion of dice loss for medical image segmentation.
    Kato S; Hotta K
    Comput Biol Med; 2024 Jan; 168():107695. PubMed ID: 38061152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers.
    Khened M; Kollerathu VA; Krishnamurthi G
    Med Image Anal; 2019 Jan; 51():21-45. PubMed ID: 30390512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance measure characterization for evaluating neuroimage segmentation algorithms.
    Chang HH; Zhuang AH; Valentino DJ; Chu WC
    Neuroimage; 2009 Aug; 47(1):122-35. PubMed ID: 19345740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automatic brain tumor segmentation with deep learning-based selective attention using overlapping patches and multi-class weighted cross-entropy.
    Ben Naceur M; Akil M; Saouli R; Kachouri R
    Med Image Anal; 2020 Jul; 63():101692. PubMed ID: 32417714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated pancreas segmentation from computed tomography and magnetic resonance images: A systematic review.
    Kumar H; DeSouza SV; Petrov MS
    Comput Methods Programs Biomed; 2019 Sep; 178():319-328. PubMed ID: 31416559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.
    Sudre CH; Li W; Vercauteren T; Ourselin S; Jorge Cardoso M
    Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017); 2017; 2017():240-248. PubMed ID: 34104926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bottom-Up Approach for Pancreas Segmentation Using Cascaded Superpixels and (Deep) Image Patch Labeling.
    Farag A; Le Lu ; Roth HR; Liu J; Turkbey E; Summers RM
    IEEE Trans Image Process; 2017 Jan; 26(1):386-399. PubMed ID: 27831881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection.
    Zhuang X; Bai W; Song J; Zhan S; Qian X; Shi W; Lian Y; Rueckert D
    Med Phys; 2015 Jul; 42(7):3822-33. PubMed ID: 26133584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient COVID-19 super pixel segmentation algorithm using MCFO-based SLIC.
    Faragallah OS; El-Hoseny HM; El-Sayed HS
    J Ambient Intell Humaniz Comput; 2023; 14(7):9217-9232. PubMed ID: 36310644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Family of boundary overlap metrics for the evaluation of medical image segmentation.
    Yeghiazaryan V; Voiculescu I
    J Med Imaging (Bellingham); 2018 Jan; 5(1):015006. PubMed ID: 29487883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RASNet: Segmentation for Tracking Surgical Instruments in Surgical Videos Using Refined Attention Segmentation Network.
    Ni ZL; Bian GB; Xie XL; Hou ZG; Zhou XH; Zhou YJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5735-5738. PubMed ID: 31947155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative evaluation of image segmentation incorporating medical consideration functions.
    Kim H; Monroe JI; Lo S; Yao M; Harari PM; Machtay M; Sohn JW
    Med Phys; 2015 Jun; 42(6):3013-23. PubMed ID: 26127054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.