These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32746202)

  • 1. Material Design Strategy for Enhancement of Readback Signal Intensity in Ferroelectric Probe Data Storage.
    Hiranaga Y; Cho Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):859-864. PubMed ID: 32746202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actual information storage with a recording density of 4 Tbit∕in. in a ferroelectric recording medium.
    Tanaka K; Cho Y
    Appl Phys Lett; 2010 Aug; 97(9):. PubMed ID: 20877653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale ferroelectric information storage based on scanning nonlinear dielectric microscopy.
    Cho Y
    J Nanosci Nanotechnol; 2007 Jan; 7(1):105-16. PubMed ID: 17455478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of Nonlinear Polarization Dynamics in the Tens of Gigahertz.
    Hagerstrom AM; Marksz EJ; Zhang X; Lu X; Long CJ; Booth JC; Takeuchi I; Orloff ND
    Phys Rev Appl; 2020; 13(4):. PubMed ID: 38487596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling dielectric and relaxor-ferroelectric properties for energy storage by tuning Pb0.92La0.08Zr0.52Ti0.48O3 film thickness.
    Brown E; Ma C; Acharya J; Ma B; Wu J; Li J
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22417-22. PubMed ID: 25405727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trirelaxor Ferroelectric Material with Giant Dielectric Permittivity over a Wide Temperature Range.
    Wang Y; Wang D; Xu J; Zhong L; Gao J; Xiao A; Wu M; He Z; Yao R; Li S; Ren X
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33272-33281. PubMed ID: 34242016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement and modeling of dielectric properties of Pb(Zr,Ti)O3 ferroelectric thin films.
    Renoud R; Borderon C; Gundel HW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1975-80. PubMed ID: 21937334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon.
    Gao J; Wang Y; Liu Y; Hu X; Ke X; Zhong L; He Y; Ren X
    Sci Rep; 2017 Jan; 7():40916. PubMed ID: 28098249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CuInP₂S₆ Room Temperature Layered Ferroelectric.
    Belianinov A; He Q; Dziaugys A; Maksymovych P; Eliseev E; Borisevich A; Morozovska A; Banys J; Vysochanskii Y; Kalinin SV
    Nano Lett; 2015 Jun; 15(6):3808-14. PubMed ID: 25932503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of hydrostatic pressure on the ferroelectric phase transition in (C(3)N(2)H(5))(5)Bi(2)Cl(11).
    Zdanowska-Frączek M; Frączek ZJ; Piecha A; Jakubas R; Rzepczyńska A
    J Phys Condens Matter; 2008 Jul; 20(27):275231. PubMed ID: 21694392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanodomain manipulation for ultrahigh density ferroelectric data storage.
    Cho Y; Hashimoto S; Odagawa N; Tanaka K; Hiranaga Y
    Nanotechnology; 2006 Apr; 17(7):S137-41. PubMed ID: 21727404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear dielectric properties and temperature stabilization effect near the ferroelectric phase transition in sodium trihydrogen selenite.
    Stankiewicz A; Cach R; Dacko S
    J Phys Condens Matter; 2006 Apr; 18(16):3993-4005. PubMed ID: 21690753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectric properties of ferroelectric nanocomposites: effects of thermal stresses and filler shape anisotropy.
    Nikitchenko AI; Azovtsev AV; Pertsev NA
    J Phys Condens Matter; 2018 Oct; 30(43):435301. PubMed ID: 30192234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of piezoelectric and flexoelectric polarization in ferroelectric liquid crystals.
    Kuczyński W; Hoffmann J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041701. PubMed ID: 16383396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-based scanning probe readback of nanometer-scale ferroelectric domain patterns at megahertz rates.
    Forrester MG; Ahner JW; Bedillion MD; Bedoya C; Bolten DG; Chang KC; de Gersem G; Hu S; Johns EC; Nassirou M; Palmer J; Roelofs A; Siegert M; Tamaru S; Vaithyanathan V; Zavaliche F; Zhao T; Zhao Y
    Nanotechnology; 2009 Jun; 20(22):225501. PubMed ID: 19436094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Athermal domain-wall creep near a ferroelectric quantum critical point.
    Kagawa F; Minami N; Horiuchi S; Tokura Y
    Nat Commun; 2016 Feb; 7():10675. PubMed ID: 26880041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A-Site Ordered Double Perovskite CaMnTi
    Gou G; Charles N; Shi J; Rondinelli JM
    Inorg Chem; 2017 Oct; 56(19):11854-11861. PubMed ID: 28891640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-consistently derived sample permittivity in stabilization of ferroelectricity due to charge accumulated at interfaces.
    Teodorescu CM
    Phys Chem Chem Phys; 2022 Mar; 24(9):5419-5430. PubMed ID: 35170598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K
    Chen C; Wang L; Liu X; Yang W; Lin J; Chen G; Yang X
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnified charge carrier conduction, permittivity, and mesomorphic properties of columnar structure of a room temperature discotic liquid crystalline material due to the dispersion of low concentration ferroelectric nanoparticles.
    Uttam R; Kumar S; Dhar R
    Phys Rev E; 2020 Nov; 102(5-1):052702. PubMed ID: 33327178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.