These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32746210)

  • 1. Anisotropic Longitudinal Wave Propagation in Swine Skull.
    Murashima N; Michimoto I; Koyama D; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jan; 68(1):65-71. PubMed ID: 32746210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on ultrasonic wave propagation in equine leg bone for screening bucked shin.
    Miyashita K; Suzuyama H; Chiba K; Osaki M; Mita H; Tamura N; Matsukawa M
    J Acoust Soc Am; 2022 Aug; 152(2):890. PubMed ID: 36050184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical analysis of ultrasonic transmission and absorption of oblique plane waves through the human skull.
    Hayner M; Hynynen K
    J Acoust Soc Am; 2001 Dec; 110(6):3319-30. PubMed ID: 11785832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes of elastic constants and anisotropy patterns in trabecular bone during disuse-induced bone loss assessed by poroelastic ultrasound.
    Cardoso L; Schaffler MB
    J Biomech Eng; 2015 Jan; 137(1):0110081-9. PubMed ID: 25412022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur.
    Mizuno K; Matsukawa M; Otani T; Takada M; Mano I; Tsujimoto T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1480-7. PubMed ID: 18986937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cortical and trabecular morphometric properties of the human calvarium.
    Adanty K; Rabey KN; Doschak MR; Bhagavathula KB; Hogan JD; Romanyk DL; Adeeb S; Ouellet S; Plaisted TA; Satapathy SS; Dennison CR
    Bone; 2021 Jul; 148():115931. PubMed ID: 33766803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age dependent changes of the diploe in the human skull.
    Skrzat J; Brzegowy P; Walocha J; Wojciechowski W
    Folia Morphol (Warsz); 2004 Feb; 63(1):67-70. PubMed ID: 15039903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the Effect of Anisotropy in Ultrasonic-Guided Wave Tomography.
    Ratassepp M; Rao J; Yu X; Fan Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):330-339. PubMed ID: 34550883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast wave ultrasonic propagation in trabecular bone: numerical study of the influence of porosity and structural anisotropy.
    Haïat G; Padilla F; Peyrin F; Laugier P
    J Acoust Soc Am; 2008 Mar; 123(3):1694-705. PubMed ID: 18345857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the anisotropic mechanical properties of the skull in low-intensity focused ultrasound towards neuromodulation of the brain.
    Metwally MK; Han HS; Jeon HJ; Khang G; Kim TS
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4565-8. PubMed ID: 24110750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of loading-direction and strain-rate on the mechanical behaviors of human frontal skull bone.
    Zhai X; Nauman EA; Moryl D; Lycke R; Chen WW
    J Mech Behav Biomed Mater; 2020 Mar; 103():103597. PubMed ID: 32090926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave velocities in articular cartilage measured by micro-Brillouin scattering technique.
    Kawase M; Yasui H; Shibagaki Y; Kawabe M; Matsukawa M
    J Acoust Soc Am; 2018 Dec; 144(6):EL492. PubMed ID: 30599656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of wood anisotropy in ultrasonic wave propagation: A ray-tracing approach.
    Espinosa L; Prieto F; Brancheriau L; Lasaygues P
    Ultrasonics; 2019 Jan; 91():242-251. PubMed ID: 30077348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous estimation of cortical bone thickness and acoustic wave velocity using a multivariable optimization approach: Bone phantom and in-vitro study.
    Tasinkevych Y; Podhajecki J; Falińska K; Litniewski J
    Ultrasonics; 2016 Feb; 65():105-12. PubMed ID: 26522955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between the anisotropy of longitudinal wave velocity and hydroxyapatite crystallite orientation in bovine cortical bone.
    Yamamoto K; Nakatsuji T; Yaoi Y; Yamato Y; Yanagitani T; Matsukawa M; Yamazaki K; Matsuyama Y
    Ultrasonics; 2012 Mar; 52(3):377-86. PubMed ID: 22014464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction and near-field observation of skull-guided acoustic waves.
    Estrada H; Rebling J; Razansky D
    Phys Med Biol; 2017 Jun; 62(12):4728-4740. PubMed ID: 28248639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of skull thickness and insertion torque at the halo pin insertion areas in the elderly: a cadaveric study.
    Ebraheim NA; Liu J; Patil V; Sanford CG; Crotty MJ; Haman SP; Yeasting RA
    Spine J; 2007; 7(6):689-93. PubMed ID: 17998128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructural characterization of trabecular bone using ultrasonic backscattering and diffusion parameters.
    Du H; Mohanty K; Muller M
    J Acoust Soc Am; 2017 May; 141(5):EL445. PubMed ID: 28599551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation study on the effects of cancellous bone structure in the skull on ultrasonic wave propagation.
    Michimoto I; Miyashita K; Suzuyama H; Yano K; Kobayashi Y; Saito K; Matsukawa M
    Sci Rep; 2021 Sep; 11(1):17592. PubMed ID: 34475422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Wavelet-Based Processing method for simultaneously determining ultrasonic velocity and material thickness.
    Loosvelt M; Lasaygues P
    Ultrasonics; 2011 Apr; 51(3):325-39. PubMed ID: 21094965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.