These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 32746227)

  • 1. Iterative Model-Based Beamforming for High Dynamic Range Applications.
    Schlunk S; Dei K; Byram B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):482-493. PubMed ID: 32746227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subaperture Processing-Based Adaptive Beamforming for Photoacoustic Imaging.
    Mukaddim RA; Ahmed R; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2336-2350. PubMed ID: 33606629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Minimum Variance Beamforming with Sub-Aperture Processing for Photoacoustic Imaging.
    Al Mukaddim R; Ahmed R; Varghese T
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2879-2882. PubMed ID: 34891848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incoherent Clutter Suppression Using Lag-One Coherence.
    Long W; Bottenus N; Trahey GE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Aug; 67(8):1544-1557. PubMed ID: 32142428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining ADMIRE and MV to Improve Image Quality.
    Schlunk S; Byram B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Sep; 69(9):2651-2662. PubMed ID: 35900997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Robust Method for Ultrasound Beamforming in the Presence of Off-Axis Clutter and Sound Speed Variation.
    Dei K; Byram B
    Ultrasonics; 2018 Sep; 89():34-45. PubMed ID: 29723842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust finite impulse response beamforming applied to medical ultrasound.
    Guenther DA; Walker WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jun; 56(6):1168-88. PubMed ID: 19574125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation-based modified delay-multiply-and-sum beamforming applied to medical ultrasound imaging.
    Esmailian K; Mohammadzadeh Asl B
    Comput Methods Programs Biomed; 2022 Nov; 226():107171. PubMed ID: 36257199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherence-based quantification of acoustic clutter sources in medical ultrasound.
    Long J; Long W; Bottenus N; Trahey G
    J Acoust Soc Am; 2020 Aug; 148(2):1051. PubMed ID: 32873040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Higher-order correlation based real-time beamforming in photoacoustic imaging.
    Mulani S; Paul S; Singh MS
    J Opt Soc Am A Opt Image Sci Vis; 2022 Oct; 39(10):1805-1814. PubMed ID: 36215552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Application of an Iterative Structure to the Delay-and-Sum and the Delay-Multiply-and-Sum Beamformers in Breast Microwave Imaging.
    Reimer T; Solis-Nepote M; Pistorius S
    Diagnostics (Basel); 2020 Jun; 10(6):. PubMed ID: 32560309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eigenspace-based beamformer using oblique signal subspace projection for ultrasound plane-wave imaging.
    Aliabadi S; Wang Y; Yu J; Zhao J; Guo W; Zhang S
    Biomed Eng Online; 2016 Nov; 15(1):127. PubMed ID: 27881172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear-array photoacoustic imaging using minimum variance-based delay multiply and sum adaptive beamforming algorithm.
    Mozaffarzadeh M; Mahloojifar A; Orooji M; Kratkiewicz K; Adabi S; Nasiriavanaki M
    J Biomed Opt; 2018 Feb; 23(2):1-15. PubMed ID: 29405047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weighted Capon beamformer combined with coded excitation in ultrasound imaging.
    Izadi SA; Mahloojifar A; Asl BM
    J Med Ultrason (2001); 2015 Oct; 42(4):477-88. PubMed ID: 26576972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Prediction Filtering of Acoustic Clutter and Random Noise in Medical Ultrasound Imaging.
    Shin J; Huang L
    IEEE Trans Med Imaging; 2017 Feb; 36(2):396-406. PubMed ID: 27654323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal Coherence to Quantify Sources of Image Degradation in Ultrasonic Imaging.
    Vienneau EP; Ozgun KA; Byram BC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1337-1352. PubMed ID: 35175919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial Coherence Beamforming With Multi-Line Transmission to Enhance the Contrast of Coherent Structures in Ultrasound Images Degraded by Acoustic Clutter.
    Matrone G; Bell MAL; Ramalli A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3570-3582. PubMed ID: 34310298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of in vivo cardiac photoacoustic signal specificity using spatiotemporal singular value decomposition.
    Al Mukaddim R; Weichmann AM; Mitchell CC; Varghese T
    J Biomed Opt; 2021 Apr; 26(4):. PubMed ID: 33876591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DMAS Beamforming with Complementary Subset Transmit for Ultrasound Coherence-Based Power Doppler Detection in Multi-Angle Plane-Wave Imaging.
    Shen CC; Chu YC
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eigenspace based minimum variance beamforming applied to ultrasound imaging of acoustically hard tissues.
    Mehdizadeh S; Austeng A; Johansen TF; Holm S
    IEEE Trans Med Imaging; 2012 Oct; 31(10):1912-21. PubMed ID: 22868562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.