These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32746331)

  • 1. From Local to Global: A Graph Framework for Retinal Artery/Vein Classification.
    Huang F; Tan T; Dashtbozorg B; Zhou Y; Romeny BMTH
    IEEE Trans Nanobioscience; 2020 Oct; 19(4):589-597. PubMed ID: 32746331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scale-space approximated convolutional neural networks for retinal vessel segmentation.
    Noh KJ; Park SJ; Lee S
    Comput Methods Programs Biomed; 2019 Sep; 178():237-246. PubMed ID: 31416552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artery vein classification in fundus images using serially connected U-Nets.
    Karlsson RA; Hardarson SH
    Comput Methods Programs Biomed; 2022 Apr; 216():106650. PubMed ID: 35139461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep vessel segmentation by learning graphical connectivity.
    Shin SY; Lee S; Yun ID; Lee KM
    Med Image Anal; 2019 Dec; 58():101556. PubMed ID: 31536906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint segmentation and classification of retinal arteries/veins from fundus images.
    Girard F; Kavalec C; Cheriet F
    Artif Intell Med; 2019 Mar; 94():96-109. PubMed ID: 30871687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel retinal vessel detection approach based on multiple deep convolution neural networks.
    Guo Y; Budak Ü; Şengür A
    Comput Methods Programs Biomed; 2018 Dec; 167():43-48. PubMed ID: 30501859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation.
    Chen D; Yang W; Wang L; Tan S; Lin J; Bu W
    PLoS One; 2022; 17(1):e0262689. PubMed ID: 35073371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DCCMED-Net: Densely connected and concatenated multi Encoder-Decoder CNNs for retinal vessel extraction from fundus images.
    Budak Ü; Cömert Z; Çıbuk M; Şengür A
    Med Hypotheses; 2020 Jan; 134():109426. PubMed ID: 31622926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VTG-Net: A CNN Based Vessel Topology Graph Network for Retinal Artery/Vein Classification.
    Mishra S; Wang YX; Wei CC; Chen DZ; Hu XS
    Front Med (Lausanne); 2021; 8():750396. PubMed ID: 34820394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification.
    Hua CH; Huynh-The T; Kim K; Yu SY; Le-Tien T; Park GH; Bang J; Khan WA; Bae SH; Lee S
    Int J Med Inform; 2019 Dec; 132():103926. PubMed ID: 31605882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network.
    Liu YP; Li Z; Xu C; Li J; Liang R
    Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hard Attention Net for Automatic Retinal Vessel Segmentation.
    Wang D; Haytham A; Pottenburgh J; Saeedi O; Tao Y
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3384-3396. PubMed ID: 32750941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of automatic retinal vessel segmentation method in fundus images via convolutional neural networks.
    Joonyoung Song ; Boreom Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():681-684. PubMed ID: 29059964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.
    Xu K; Feng D; Mi H
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29168750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images.
    Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ
    Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Accurate Segmentation of Retinal Vessels and the Optic Disc in Fundoscopic Images with Generative Adversarial Networks.
    Son J; Park SJ; Jung KH
    J Digit Imaging; 2019 Jun; 32(3):499-512. PubMed ID: 30291477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-label classification of retinal lesions in diabetic retinopathy for automatic analysis of fundus fluorescein angiography based on deep learning.
    Pan X; Jin K; Cao J; Liu Z; Wu J; You K; Lu Y; Xu Y; Su Z; Jiang J; Yao K; Ye J
    Graefes Arch Clin Exp Ophthalmol; 2020 Apr; 258(4):779-785. PubMed ID: 31932886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Fundus Image Quality Assessment in Retinopathy of Prematurity Using Deep Convolutional Neural Networks.
    Coyner AS; Swan R; Campbell JP; Ostmo S; Brown JM; Kalpathy-Cramer J; Kim SJ; Jonas KE; Chan RVP; Chiang MF;
    Ophthalmol Retina; 2019 May; 3(5):444-450. PubMed ID: 31044738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of Retinal Microvascular Density in Optical Coherence Tomographic Angiography Images in Diabetic Retinopathy.
    Durbin MK; An L; Shemonski ND; Soares M; Santos T; Lopes M; Neves C; Cunha-Vaz J
    JAMA Ophthalmol; 2017 Apr; 135(4):370-376. PubMed ID: 28301651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ELEMENT: Multi-Modal Retinal Vessel Segmentation Based on a Coupled Region Growing and Machine Learning Approach.
    Rodrigues EO; Conci A; Liatsis P
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3507-3519. PubMed ID: 32750920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.