These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32746339)

  • 61. A Residual Based Attention Model for EEG Based Sleep Staging.
    Qu W; Wang Z; Hong H; Chi Z; Feng DD; Grunstein R; Gordon C
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):2833-2843. PubMed ID: 32149700
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Measuring the effects of sevoflurane on electroencephalogram using sample entropy.
    Shalbaf R; Behnam H; Sleigh J; Voss L
    Acta Anaesthesiol Scand; 2012 Aug; 56(7):880-9. PubMed ID: 22404496
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Design and Evaluation of a Closed-Loop Anesthesia System With Robust Control and Safety System.
    West N; van Heusden K; Görges M; Brodie S; Rollinson A; Petersen CL; Dumont GA; Ansermino JM; Merchant RN
    Anesth Analg; 2018 Oct; 127(4):883-894. PubMed ID: 29210791
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A-phase classification using convolutional neural networks.
    Arce-Santana ER; Alba A; Mendez MO; Arce-Guevara V
    Med Biol Eng Comput; 2020 May; 58(5):1003-1014. PubMed ID: 32124224
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Non-sinusoidal waves in the EEG and their simulated effect on anaesthetic quantitative EEG monitors.
    Pullon RM; McCabe S; Gaskell A; Sleigh JW
    J Clin Monit Comput; 2019 Dec; 33(6):1089-1096. PubMed ID: 30671894
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A cepstral analysis based method for quantifying the depth of anesthesia from human EEG.
    Kim TH; Yoon YG; Uhm J; Jeong DW; Yoon SZ; Park SH
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5994-7. PubMed ID: 24111105
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Analog front-end measuring biopotential signal with effective offset rejection loop.
    Lim S; Kim H; Song H; Cho DI; Ko H
    Biomed Mater Eng; 2015; 26 Suppl 1():S935-41. PubMed ID: 26406095
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Super-Resolution for Improving EEG Spatial Resolution using Deep Convolutional Neural Network-Feasibility Study.
    Kwon M; Han S; Kim K; Jun SC
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816868
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Influence of an "Electroencephalogram-Based" Monitor Choice on the Delay Between the Predicted Propofol Effect-Site Concentration and the Measured Drug Effect.
    Sahinovic MM; van den Berg JP; Colin PJ; Gambus PL; Jensen EW; Agustí M; Ferreiro T; Struys MMRF
    Anesth Analg; 2020 Oct; 131(4):1184-1192. PubMed ID: 32925339
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Development of a Modular Board for EEG Signal Acquisition.
    Uktveris T; Jusas V
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970846
    [TBL] [Abstract][Full Text] [Related]  

  • 71. From spikes to EEG: integrated multichannel and selective acquisition of neuropotentials.
    Mollazadeh M; Murari K; Cauwenberghs G; Thakor N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2741-4. PubMed ID: 19163272
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images.
    Emami A; Kunii N; Matsuo T; Shinozaki T; Kawai K; Takahashi H
    Neuroimage Clin; 2019; 22():101684. PubMed ID: 30711680
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deep learning for electroencephalogram (EEG) classification tasks: a review.
    Craik A; He Y; Contreras-Vidal JL
    J Neural Eng; 2019 Jun; 16(3):031001. PubMed ID: 30808014
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Practical Training of Anesthesia Clinicians in Electroencephalogram-Based Determination of Hypnotic Depth of General Anesthesia.
    Bombardieri AM; Wildes TS; Stevens T; Wolfson M; Steinhorn R; Ben Abdallah A; Sleigh J; Avidan MS
    Anesth Analg; 2020 Mar; 130(3):777-786. PubMed ID: 31880629
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
    Sawan M; Salam MT; Le Lan J; Kassab A; Gelinas S; Vannasing P; Lesage F; Lassonde M; Nguyen DK
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):186-95. PubMed ID: 23853301
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A 340 nW/Channel 110 dB PSRR Neural Recording Analog Front-End Using Replica-Biasing LNA, Level-Shifter Assisted PGA, and Averaged LFP Servo Loop in 65 nm CMOS.
    Lyu L; Ye D; Shi CR
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):811-824. PubMed ID: 32746334
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A low power, low noise Programmable Analog Front End (PAFE) for biopotential measurements.
    Adimulam MK; Divya A; Tejaswi K; Srinivas MB
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3844-3847. PubMed ID: 29060736
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A low-power self-biased neural amplifier for implantable EEG recording system ICs.
    Kim J; Pedrotti K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1573-6. PubMed ID: 21096384
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals.
    Hussein R; Palangi H; Ward RK; Wang ZJ
    Clin Neurophysiol; 2019 Jan; 130(1):25-37. PubMed ID: 30472579
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An ECG recording front-end with continuous-time level-crossing sampling.
    Li Y; Mansano AL; Yuan Y; Zhao D; Serdijn WA
    IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):626-35. PubMed ID: 25330494
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.