BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 32746342)

  • 1. Wireless User-Generic Ear EEG.
    Kaveh R; Doong J; Zhou A; Schwendeman C; Gopalan K; Burghardt FL; Arias AC; Maharbiz MM; Muller R
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):727-737. PubMed ID: 32746342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dry-Contact Electrode Ear-EEG.
    Kappel SL; Rank ML; Toft HO; Andersen M; Kidmose P
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):150-158. PubMed ID: 29993415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Life Dry-Contact Ear-EEG.
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5470-5474. PubMed ID: 30441575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drowsiness Detection with Wireless, User-Generic, Dry Electrode Ear EEG.
    Schwendeman C; Kaveh R; Muller R
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():9-12. PubMed ID: 36086111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generic Dry-Contact Ear-EEG.
    Bertelsen AR; Bladt H; Christensen CB; Kappel SL; Toft HO; Rank ML; Mikkelsen KB; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5552-5555. PubMed ID: 31947113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ear-EEG from generic earpieces: a feasibility study.
    Kidmose P; Looney D; Jochumsen L; Mandic DP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():543-6. PubMed ID: 24109744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Custom-Fitted In- and Around-the-Ear Sensors for Unobtrusive and On-the-Go EEG Acquisitions: Development and Validation.
    Valentin O; Viallet G; Delnavaz A; Cretot-Richert G; Ducharme M; Monsarat-Chanon H; Voix J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable Anatomically-Tunable Fully In-Ear Dry-Electrode Array for User-Generic Unobtrusive Electrophysiology.
    Lee MS; Paul A; Joung TH; Xu Y; Wu J; Hairston WD; Cauwenberghs G
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brain Wearables: Validation Toolkit for Ear-Level EEG Sensors.
    Correia G; Crosse MJ; Lopez Valdes A
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording.
    Hoon Lee J; Min Lee S; Jin Byeon H; Sook Hong J; Suk Park K; Lee SH
    J Neural Eng; 2014 Aug; 11(4):046014. PubMed ID: 24963747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological artifacts in scalp EEG and ear-EEG.
    Kappel SL; Looney D; Mandic DP; Kidmose P
    Biomed Eng Online; 2017 Aug; 16(1):103. PubMed ID: 28800744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. myBrain: a novel EEG embedded system for epilepsy monitoring.
    Pinho F; Cerqueira J; Correia J; Sousa N; Dias N
    J Med Eng Technol; 2017 Oct; 41(7):564-585. PubMed ID: 28994627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-contact Wearable EEG Sensors for SSVEP-based Brain Computer Interface Applications.
    Soleymanpour R; Patel C; Kim I
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2016-2019. PubMed ID: 30440796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
    Sawan M; Salam MT; Le Lan J; Kassab A; Gelinas S; Vannasing P; Lesage F; Lassonde M; Nguyen DK
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):186-95. PubMed ID: 23853301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a wireless dry electrode system for electroencephalography.
    Wyckoff SN; Sherlin LH; Ford NL; Dalke D
    J Neuroeng Rehabil; 2015 Oct; 12():95. PubMed ID: 26520574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and verification of a wearable wireless 64-channel high-resolution EEG acquisition system with wi-fi transmission.
    Lin CT; Wang Y; Chen SF; Huang KC; Liao LD
    Med Biol Eng Comput; 2023 Nov; 61(11):3003-3019. PubMed ID: 37563528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of the multi-channel electroencephalography-based brain-computer interface with novel dry sensors.
    Wu SL; Liao LD; Liou CH; Chen SA; Ko LW; Chen BW; Wang PS; Chen SF; Lin CT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1793-7. PubMed ID: 23366259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electric field encephalography for brain activity monitoring.
    Versek C; Frasca T; Zhou J; Chowdhury K; Sridhar S
    J Neural Eng; 2018 Aug; 15(4):046027. PubMed ID: 29749347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.
    Yu YH; Lu SW; Chuang CH; King JT; Chang CL; Chen SA; Chen SF; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):806-13. PubMed ID: 26780814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes.
    Kam JWY; Griffin S; Shen A; Patel S; Hinrichs H; Heinze HJ; Deouell LY; Knight RT
    Neuroimage; 2019 Jan; 184():119-129. PubMed ID: 30218769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.