These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32746343)

  • 1. A 119dB Dynamic Range Charge Counting Light-to-Digital Converter For Wearable PPG/NIRS Monitoring Applications.
    Lin Q; Xu J; Song S; Breeschoten A; Konijnenburg M; Van Hoof C; Tavernier F; Van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):800-810. PubMed ID: 32746343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 134 DB Dynamic Range Noise Shaping Slope Light-to-Digital Converter for Wearable Chest PPG Applications.
    Lin Q; Song S; Van Wegberg R; Sijbers W; Biswas D; Konijnenburg M; Van Hoof C; Tavernier F; Van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1224-1235. PubMed ID: 34818192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 280 μW, 108 dB DR PPG-Readout IC With Reconfigurable, 2nd-Order, Incremental ΔΣM Front-End for Direct Light-to-Digital Conversion.
    Marefat F; Erfani R; Kilgore KL; Mohseni P
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1183-1194. PubMed ID: 33186120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 665 μW Silicon Photomultiplier-Based NIRS/EEG/EIT Monitoring ASIC for Wearable Functional Brain Imaging.
    Xu J; Konijnenburg M; Song S; Ha H; van Wegberg R; Mazzillo M; Fallica G; Van Hoof C; De Raedt W; Van Helleputte N
    IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1267-1277. PubMed ID: 30489273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 2.6 μW Monolithic CMOS Photoplethysmographic (PPG) Sensor Operating With 2 μW LED Power for Continuous Health Monitoring.
    Caizzone A; Boukhayma A; Enz C
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1243-1253. PubMed ID: 31581097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications.
    Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H
    Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 2.3-5.7 μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO
    Wang P; Agarwala R; Ownby NB; Liu X; Calhoun BH
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):564-579. PubMed ID: 38289849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 5-ms Error, 22-μA Photoplethysmography Sensor using Current Integration Circuit and Correlated Double Sampling.
    Watanabe K; Izumi S; Yano Y; Kawaguchi H; Yoshimoto M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5566-5569. PubMed ID: 30441597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Low-Power Photoplethysmogram-Based Heart Rate Sensor Using Heartbeat Locked Loop.
    Lee J; Jang DH; Park S; Cho S
    IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1220-1229. PubMed ID: 30334807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a Self-Powered ECG and PPG Sensing Wearable Device.
    Zhao L; Jia Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6791-6794. PubMed ID: 34892667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation.
    Kim J; Kim J; Ko H
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26729122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Real-Time Vital-Sign Monitoring in the Physical Domain on a Mixed-Signal Reconfigurable Platform.
    Shah S; Toreyin H; Gungor CB; Hasler J
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1690-1699. PubMed ID: 31670678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reflectance Photoplethysmography as Noninvasive Monitoring of Tissue Blood Perfusion.
    Abay TY; Kyriacou PA
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2187-95. PubMed ID: 25838515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Noninvasive Glucose Monitoring SoC Based on Single Wavelength Photoplethysmography.
    Hina A; Saadeh W
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):504-515. PubMed ID: 32149655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A 2.64- μW 71-dB SNDR Discrete-Time Signal-Folding Amplifier for Reducing ADC's Resolution Requirement in Wearable ECG Acquisition Systems.
    Ratametha C; Tepwimonpetkun S; Wattanapanitch W
    IEEE Trans Biomed Circuits Syst; 2020 Feb; 14(1):48-64. PubMed ID: 31796416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths.
    Lee J; Kim M; Park HK; Kim IY
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Low-Power Wide Dynamic-Range Current Readout Circuit for Ion-Sensitive FET Sensors.
    Son H; Cho H; Koo J; Ji Y; Kim B; Park HJ; Sim JY
    IEEE Trans Biomed Circuits Syst; 2017 Jun; 11(3):523-533. PubMed ID: 28371784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reflectance-Based Organic Pulse Meter Sensor for Wireless Monitoring of Photoplethysmogram Signal.
    Elsamnah F; Bilgaiyan A; Affiq M; Shim CH; Ishidai H; Hattori R
    Biosensors (Basel); 2019 Jul; 9(3):. PubMed ID: 31295893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 0.45 V 100-channel neural-recording IC with sub- μW/channel consumption in 0.18 μm CMOS.
    Han D; Zheng Y; Rajkumar R; Dawe GS; Je M
    IEEE Trans Biomed Circuits Syst; 2013 Dec; 7(6):735-46. PubMed ID: 24473539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a novel portable multi-channel near infrared spectroscopy system.
    Kostic MN; Vartanian T; Culjat M; Singh R; Grundfest WS
    Stud Health Technol Inform; 2013; 184():230-4. PubMed ID: 23400162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.