BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32746366)

  • 1. Review of the Techniques Used for Investigating the Role Elastin and Collagen Play in Arterial Wall Mechanics.
    Giudici A; Wilkinson IB; Khir AW
    IEEE Rev Biomed Eng; 2021; 14():256-269. PubMed ID: 32746366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the in-series and in-parallel contribution of elastin assessed by a structure-based biomechanical model of the arterial wall.
    Roy S; Tsamis A; Prod'hom G; Stergiopulos N
    J Biomech; 2008; 41(4):737-43. PubMed ID: 18456913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation of mechanical properties and quantitative proteomics of VSMC along the arterial tree.
    Dinardo CL; Venturini G; Zhou EH; Watanabe IS; Campos LC; Dariolli R; da Motta-Leal-Filho JM; Carvalho VM; Cardozo KH; Krieger JE; Alencar AM; Pereira AC
    Am J Physiol Heart Circ Physiol; 2014 Feb; 306(4):H505-16. PubMed ID: 24337458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biaxial active mechanical properties of the porcine primary renal artery.
    Zhou B; Rachev A; Shazly T
    J Mech Behav Biomed Mater; 2015 Aug; 48():28-37. PubMed ID: 25913605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries.
    Kochová P; Kuncová J; Svíglerová J; Cimrman R; Miklíková M; Liška V; Tonar Z
    Physiol Meas; 2012 Aug; 33(8):1335-51. PubMed ID: 22813960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defective autophagy in vascular smooth muscle cells increases passive stiffness of the mouse aortic vessel wall.
    De Munck DG; Leloup AJA; De Meyer GRY; Martinet W; Fransen P
    Pflugers Arch; 2020 Aug; 472(8):1031-1040. PubMed ID: 32488322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural inhomogeneity and fiber orientation in the inner arterial media.
    Timmins LH; Wu Q; Yeh AT; Moore JE; Greenwald SE
    Am J Physiol Heart Circ Physiol; 2010 May; 298(5):H1537-45. PubMed ID: 20173046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of elastin and collagen to the inflation response of the pig thoracic aorta: assessing elastin's role in mechanical homeostasis.
    Lillie MA; Armstrong TE; Gérard SG; Shadwick RE; Gosline JM
    J Biomech; 2012 Aug; 45(12):2133-41. PubMed ID: 22770359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus.
    Bank AJ; Wang H; Holte JE; Mullen K; Shammas R; Kubo SH
    Circulation; 1996 Dec; 94(12):3263-70. PubMed ID: 8989139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosaminoglycans contribute to extracellular matrix fiber recruitment and arterial wall mechanics.
    Mattson JM; Turcotte R; Zhang Y
    Biomech Model Mechanobiol; 2017 Feb; 16(1):213-225. PubMed ID: 27491312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes of wall composition and collagen cross-linking in the rat carotid artery - In relation with arterial mechanics.
    Hayashi K; Hirayama E
    J Mech Behav Biomed Mater; 2017 Jan; 65():881-889. PubMed ID: 27821371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points.
    Kwon GP; Schroeder JL; Amar MJ; Remaley AT; Balaban RS
    Circulation; 2008 Jun; 117(22):2919-27. PubMed ID: 18506002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall.
    Wang R; Yu X; Zhang Y
    Biomech Model Mechanobiol; 2021 Feb; 20(1):93-106. PubMed ID: 32705413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-specific arterial micromechanics and microstructure: Influences of age, anatomical location, and processing technique.
    Rafuse M; Xu X; Stenmark K; Neu CP; Yin X; Tan W
    J Biomech; 2019 May; 88():113-121. PubMed ID: 31010593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior.
    Armentano RL; Barra JG; Levenson J; Simon A; Pichel RH
    Circ Res; 1995 Mar; 76(3):468-78. PubMed ID: 7859392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze-thaw induced biomechanical changes in arteries: role of collagen matrix and smooth muscle cells.
    Venkatasubramanian RT; Wolkers WF; Shenoi MM; Barocas VH; Lafontaine D; Soule CL; Iaizzo PA; Bischof JC
    Ann Biomed Eng; 2010 Mar; 38(3):694-706. PubMed ID: 20108044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications.
    Bellini C; Ferruzzi J; Roccabianca S; Di Martino ES; Humphrey JD
    Ann Biomed Eng; 2014 Mar; 42(3):488-502. PubMed ID: 24197802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation.
    Zeinali-Davarani S; Chow MJ; Turcotte R; Zhang Y
    Ann Biomed Eng; 2013 Jul; 41(7):1528-38. PubMed ID: 23297000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrostatic pressure independently increases elastin and collagen co-expression in small-diameter engineered arterial constructs.
    Crapo PM; Wang Y
    J Biomed Mater Res A; 2011 Mar; 96(4):673-81. PubMed ID: 21268239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arterial mechanics considering the structural and mechanical contributions of ECM constituents.
    Wang Y; Zeinali-Davarani S; Zhang Y
    J Biomech; 2016 Aug; 49(12):2358-65. PubMed ID: 26947034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.