BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32746367)

  • 1. Speech Technology for Healthcare: Opportunities, Challenges, and State of the Art.
    Latif S; Qadir J; Qayyum A; Usama M; Younis S
    IEEE Rev Biomed Eng; 2021; 14():342-356. PubMed ID: 32746367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech analysis for health: Current state-of-the-art and the increasing impact of deep learning.
    Cummins N; Baird A; Schuller BW
    Methods; 2018 Dec; 151():41-54. PubMed ID: 30099083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech Technology Progress Based on New Machine Learning Paradigm.
    Delić V; Perić Z; Sečujski M; Jakovljević N; Nikolić J; Mišković D; Simić N; Suzić S; Delić T
    Comput Intell Neurosci; 2019; 2019():4368036. PubMed ID: 31341467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Speech Vision: An End-to-End Deep Learning-Based Dysarthric Automatic Speech Recognition System.
    Shahamiri SR
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():852-861. PubMed ID: 33929963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principles of automatic processing of speech signals and their application in medical technology and for aids for handicapped.
    Mangold H
    Med Prog Technol; 1988; 14(1):39-56. PubMed ID: 2976877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic speech recognition: A primer for speech-language pathology researchers.
    Keshet J
    Int J Speech Lang Pathol; 2018 Nov; 20(6):599-609. PubMed ID: 31274357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete and Resilient Documentation for Operational Medical Environments Leveraging Mobile Hands-free Technology in a Systems Approach: Experimental Study.
    Woo M; Mishra P; Lin J; Kar S; Deas N; Linduff C; Niu S; Yang Y; McClendon J; Smith DH; Shelton SL; Gainey CE; Gerard WC; Smith MC; Griffin SF; Gimbel RW; Wang KC
    JMIR Mhealth Uhealth; 2021 Oct; 9(10):e32301. PubMed ID: 34636729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors that influence the performance of experienced speech recognition users.
    Koester HH
    Assist Technol; 2006; 18(1):56-76. PubMed ID: 16796242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning applications in telerehabilitation speech therapy scenarios.
    Mulfari D; La Placa D; Rovito C; Celesti A; Villari M
    Comput Biol Med; 2022 Sep; 148():105864. PubMed ID: 35853398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The benefit obtained from visually displayed text from an automatic speech recognizer during listening to speech presented in noise.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2008 Dec; 29(6):838-52. PubMed ID: 18633325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic speech recognition (ASR) and its use as a tool for assessment or therapy of voice, speech, and language disorders.
    Kitzing P; Maier A; Ahlander VL
    Logoped Phoniatr Vocol; 2009; 34(2):91-6. PubMed ID: 19173117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speech technology in 2001: new research directions.
    Atal BS
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10046-51. PubMed ID: 7479724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating Noise Robustness in Speech Command Recognition by Noise Augmentation of Training Data.
    Pervaiz A; Hussain F; Israr H; Tahir MA; Raja FR; Baloch NK; Ishmanov F; Zikria YB
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of age, hearing, and working memory on the speech comprehension benefit derived from an automatic speech recognition system.
    Zekveld AA; Kramer SE; Kessens JM; Vlaming MS; Houtgast T
    Ear Hear; 2009 Apr; 30(2):262-72. PubMed ID: 19194286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Educational Applications for Blind and Partially Sighted Pupils Based on Speech Technologies for Serbian.
    Lučić B; Ostrogonac S; Vujnović Sedlar N; Sečujski M
    ScientificWorldJournal; 2015; 2015():839252. PubMed ID: 26171422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring expressivity and emotion with artificial voice and speech technologies.
    Pauletto S; Balentine B; Pidcock C; Jones K; Bottaci L; Aretoulaki M; Wells J; Mundy DP; Balentine J
    Logoped Phoniatr Vocol; 2013 Oct; 38(3):115-25. PubMed ID: 24024543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Documentation Speed Using Web-Based Medical Speech Recognition Technology: Randomized Controlled Trial.
    Vogel M; Kaisers W; Wassmuth R; Mayatepek E
    J Med Internet Res; 2015 Nov; 17(11):e247. PubMed ID: 26531850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interventions using high-technology communication devices: a state of the art review.
    Baxter S; Enderby P; Evans P; Judge S
    Folia Phoniatr Logop; 2012; 64(3):137-44. PubMed ID: 22653226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint Dictionary Learning-Based Non-Negative Matrix Factorization for Voice Conversion to Improve Speech Intelligibility After Oral Surgery.
    Fu SW; Li PC; Lai YH; Yang CC; Hsieh LC; Tsao Y
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2584-2594. PubMed ID: 28026747
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.