BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32746372)

  • 1. Integrating Wearable Haptics and Obstacle Avoidance for the Visually Impaired in Indoor Navigation: A User-Centered Approach.
    Barontini F; Catalano MG; Pallottino L; Leporini B; Bianchi M
    IEEE Trans Haptics; 2021; 14(1):109-122. PubMed ID: 32746372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System.
    Chen Z; Liu X; Kojima M; Huang Q; Arai T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Development of a Wearable Assistive Device Integrating a Fuzzy Decision Support System for Blind and Visually Impaired People.
    Bouteraa Y
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Unfolding Space Glove: A Wearable Spatio-Visual to Haptic Sensory Substitution Device for Blind People.
    Kilian J; Neugebauer A; Scherffig L; Wahl S
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a wearable support system to aid the visually impaired in independent mobilization and navigation.
    Froneman T; van den Heever D; Dellimore K
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():783-786. PubMed ID: 29059989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-Diamond Model-Based Orientation Guidance in Wearable Human-Machine Navigation Systems for Blind and Visually Impaired People.
    Zhang X; Zhang H; Zhang L; Zhu Y; Hu F
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision-based Mobile Indoor Assistive Navigation Aid for Blind People.
    Li B; Muñoz JP; Rong X; Chen Q; Xiao J; Tian Y; Arditi A; Yousuf M
    IEEE Trans Mob Comput; 2019 Mar; 18(3):702-714. PubMed ID: 30774566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Cost Open Source Ultrasound-Sensing Based Navigational Support for the Visually Impaired.
    Petsiuk AL; Pearce JM
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereo Vision Based Sensory Substitution for the Visually Impaired.
    Caraiman S; Zvoristeanu O; Burlacu A; Herghelegiu P
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31226796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indoor Navigation Systems for Visually Impaired Persons: Mapping the Features of Existing Technologies to User Needs.
    Plikynas D; Žvironas A; Budrionis A; Gudauskis M
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. StereoPilot: A Wearable Target Location System for Blind and Visually Impaired Using Spatial Audio Rendering.
    Hu X; Song A; Wei Z; Zeng H
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1621-1630. PubMed ID: 35696467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survey and analysis of the current status of research in the field of outdoor navigation for the blind.
    Lian Y; Liu DE; Ji WZ
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1657-1675. PubMed ID: 37402242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Range sensor-based assistive technology solutions for people with visual impairment: a review.
    Manzoor S; Iftikhar S; Ayub I; Shahid A; Haq AU; Muhammad W; Shafique M
    Disabil Rehabil Assist Technol; 2024 Apr; 19(3):576-584. PubMed ID: 36036390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation.
    Yang K; Wang K; Bergasa LM; Romera E; Hu W; Sun D; Sun J; Cheng R; Chen T; López E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent Head-Mounted Obstacle Avoidance Wearable for the Blind and Visually Impaired.
    Xu P; Song A; Wang K
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Object detection and recognition: using deep learning to assist the visually impaired.
    Bhandari A; Prasad PWC; Alsadoon A; Maag A
    Disabil Rehabil Assist Technol; 2021 Apr; 16(3):280-288. PubMed ID: 31694420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smartphone-based computer vision travelling aids for blind and visually impaired individuals: A systematic review.
    Budrionis A; Plikynas D; Daniušis P; Indrulionis A
    Assist Technol; 2022 Mar; 34(2):178-194. PubMed ID: 32207640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-obstacle aware smart navigation system for visually impaired people in fog connected IoT-cloud environment.
    Mueen A; Awedh M; Zafar B
    Health Informatics J; 2022; 28(3):14604582221112609. PubMed ID: 35801559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People.
    Martinez-Sala AS; Losilla F; Sánchez-Aarnoutse JC; García-Haro J
    Sensors (Basel); 2015 Dec; 15(12):32168-87. PubMed ID: 26703610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.