These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 32746373)

  • 21. VES: A Mixed-Reality Development Platform of Navigation Systems for Blind and Visually Impaired.
    Real S; Araujo A
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visual delay affects force scaling and weight perception during object lifting in virtual reality.
    van Polanen V; Tibold R; Nuruki A; Davare M
    J Neurophysiol; 2019 Apr; 121(4):1398-1409. PubMed ID: 30673365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual Echolocation Concept for the Colorophone Sensory Substitution Device Using Virtual Reality.
    Bizoń-Angov P; Osiński D; Wierzchoń M; Konieczny J
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.
    Cosco F; Garre C; Bruno F; Muzzupappa M; Otaduy MA
    IEEE Trans Vis Comput Graph; 2013 Jan; 19(1):159-72. PubMed ID: 22508901
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Avatar Embodiment Enhances Haptic Confidence on the Out-of-Body Touch Illusion.
    Gonzalez-Franco M; Berger CC
    IEEE Trans Haptics; 2019; 12(3):319-326. PubMed ID: 31251194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception.
    Tong Q; Yuan Z; Liao X; Zheng M; Yuan T; Zhao J
    IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3123-3136. PubMed ID: 29990159
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions.
    Sun Z; Zhu M; Shan X; Lee C
    Nat Commun; 2022 Sep; 13(1):5224. PubMed ID: 36064838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining Dynamic Passive Haptics and Haptic Retargeting for Enhanced Haptic Feedback in Virtual Reality.
    Zenner A; Ullmann K; Kruger A
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2627-2637. PubMed ID: 33750705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a "Cobot Tactile Display" for Accessing Virtual Diagrams by Blind and Visually Impaired Users.
    Gill S; Pawluk DTV
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Navigation and Augmented Reality System for Visually Impaired People.
    Lo Valvo A; Croce D; Garlisi D; Giuliano F; Giarré L; Tinnirello I
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33924773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of force haptic reappearance system based on Geomagic Touch haptic device.
    Tang Y; Liu S; Deng Y; Zhang Y; Yin L; Zheng W
    Comput Methods Programs Biomed; 2020 Jul; 190():105344. PubMed ID: 32032805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Faster acquisition of laparoscopic skills in virtual reality with haptic feedback and 3D vision.
    Hagelsteen K; Langegård A; Lantz A; Ekelund M; Anderberg M; Bergenfelz A
    Minim Invasive Ther Allied Technol; 2017 Oct; 26(5):269-277. PubMed ID: 28367667
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effectiveness of an interactive audio-tactile map for the process of cognitive mapping and recall among people with visual impairments.
    Griffin E; Picinali L; Scase M
    Brain Behav; 2020 Jul; 10(7):e01650. PubMed ID: 32445295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Grasping trajectories in a virtual environment adhere to Weber's law.
    Ozana A; Berman S; Ganel T
    Exp Brain Res; 2018 Jun; 236(6):1775-1787. PubMed ID: 29663023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Haptic Perception of Edge Sharpness in Real and Virtual Environments.
    Jaeyoung Park ; Provancher WR; Tan HZ
    IEEE Trans Haptics; 2017; 10(1):54-62. PubMed ID: 28113989
    [TBL] [Abstract][Full Text] [Related]  

  • 38. AR Feels "Softer" than VR: Haptic Perception of Stiffness in Augmented versus Virtual Reality.
    Gaffary Y; Le Gouis B; Marchal M; Argelaguet F; Arnaldi B; Lecuyer A
    IEEE Trans Vis Comput Graph; 2017 Nov; 23(11):2372-2377. PubMed ID: 28809699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Virtual Reality Environments and Haptic Strategies to Enhance Implicit Learning and Motivation in Robot-Assisted Training.
    Bernardoni F; Ozen O; Buetler K; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():760-765. PubMed ID: 31374722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Audio-Tactile Rendering: A Review on Technology and Methods to Convey Musical Information through the Sense of Touch.
    Remache-Vinueza B; Trujillo-León A; Zapata M; Sarmiento-Ortiz F; Vidal-Verdú F
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.