These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32746375)

  • 1. Effect of Number of Digits on Human Precision Manipulation Workspaces.
    Feix T; Bullock IM; Gloumakov Y; Dollar AM
    IEEE Trans Haptics; 2021; 14(1):68-82. PubMed ID: 32746375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotational ranges of human precision manipulation when grasping objects with two to five digits.
    Feix T; Bullock IM; Gloumakov Y; Dollar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5785-90. PubMed ID: 26737607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human precision manipulation workspace: Effects of object size and number of fingers used.
    Bullock IM; Feix T; Dollar AM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5768-72. PubMed ID: 26737603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Workspace Volume of Human Bimanual Precision Manipulation Influenced by the Wrist Configuration and Finger Combination.
    Liu Y; Cheng Q; Wang W; Ming D
    IEEE Trans Haptics; 2022; 15(1):178-187. PubMed ID: 34469308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Workspace Shape and Characteristics for Human Two- and Three-Fingered Precision Manipulation.
    Bullock IM; Feix T; Dollar AM
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2196-207. PubMed ID: 25838516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of carpal tunnel syndrome on dexterous manipulation are grip type-dependent.
    Zhang W; Johnston JA; Ross MA; Sanniec K; Gleason EA; Dueck AC; Santello M
    PLoS One; 2013; 8(1):e53751. PubMed ID: 23326498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional workspace for precision manipulation between thumb and fingers in normal hands.
    Kuo LC; Chiu HY; Chang CW; Hsu HY; Sun YN
    J Electromyogr Kinesiol; 2009 Oct; 19(5):829-39. PubMed ID: 18778954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grasping trapezoidal objects.
    Kleinholdermann U; Brenner E; Franz VH; Smeets JB
    Exp Brain Res; 2007 Jul; 180(3):415-20. PubMed ID: 17310376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precision grip responses to unexpected rotational perturbations scale with axis of rotation.
    De Gregorio M; Santos VJ
    J Biomech; 2013 Apr; 46(6):1098-103. PubMed ID: 23499162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensorimotor memory of weight asymmetry in object manipulation.
    Bursztyn LL; Flanagan JR
    Exp Brain Res; 2008 Jan; 184(1):127-33. PubMed ID: 17957361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dexterous manipulation is poorer at older ages and is dissociated from decline of hand strength.
    Dayanidhi S; Valero-Cuevas FJ
    J Gerontol A Biol Sci Med Sci; 2014 Sep; 69(9):1139-45. PubMed ID: 24610868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of grasp stability during pronation and supination movements.
    Johansson RS; Backlin JL; Burstedt MK
    Exp Brain Res; 1999 Sep; 128(1-2):20-30. PubMed ID: 10473736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust whole-hand spatial manipulation via energy maps with caging, rolling, and sliding.
    Bircher WG; Morgan AS; Dollar AM
    Front Robot AI; 2023; 10():1281188. PubMed ID: 38077457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Path Planning for 3-D In-Hand Manipulation of Micro-Objects Using Rotation Decomposition.
    Kumar P; Gauthier M; Dahmouche R
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective deficits of grip force control during object manipulation in patients with reduced sensibility of the grasping digits.
    Nowak DA; Hermsdörfer J
    Neurosci Res; 2003 Sep; 47(1):65-72. PubMed ID: 12941448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relation between force and movement when grasping an object with a precision grip.
    Biegstraaten M; Smeets JB; Brenner E
    Exp Brain Res; 2006 May; 171(3):347-57. PubMed ID: 16307243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-digit control of contact forces during rotation of a hand-held object.
    Winges SA; Eonta SE; Soechting JF; Flanders M
    J Neurophysiol; 2008 Apr; 99(4):1846-56. PubMed ID: 18234979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits.
    Macefield VG; Johansson RS
    Exp Brain Res; 1996 Feb; 108(1):172-84. PubMed ID: 8721165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nondigital afferent input in reactive control of fingertip forces during precision grip.
    Häger-Ross C; Johansson RS
    Exp Brain Res; 1996 Jun; 110(1):131-41. PubMed ID: 8817264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributing vertical forces between the digits during gripping and lifting: the effects of rotating the hand versus rotating the object.
    Quaney BM; Cole KJ
    Exp Brain Res; 2004 Mar; 155(2):145-55. PubMed ID: 14661118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.