BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 32746376)

  • 21. Augmented reality and haptic interfaces for robot-assisted surgery.
    Yamamoto T; Abolhassani N; Jung S; Okamura AM; Judkins TN
    Int J Med Robot; 2012 Mar; 8(1):45-56. PubMed ID: 22069247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A wearable vibrotactile system for distributed guidance in teleoperation and virtual environments.
    Bai D; Ju F; Qi F; Cao Y; Wang Y; Chen B
    Proc Inst Mech Eng H; 2019 Feb; 233(2):244-253. PubMed ID: 30595086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The impact of haptic feedback quality on the performance of teleoperated assembly tasks.
    Wildenbeest JG; Abbink DA; Heemskerk CJ; van der Helm FC; Boessenkool H
    IEEE Trans Haptics; 2013; 6(2):242-52. PubMed ID: 24808307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems.
    Nitsch V; Färber B
    IEEE Trans Haptics; 2013; 6(4):387-98. PubMed ID: 24808391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards functional robotic training: motor learning of dynamic tasks is enhanced by haptic rendering but hampered by arm weight support.
    Özen Ö; Buetler KA; Marchal-Crespo L
    J Neuroeng Rehabil; 2022 Feb; 19(1):19. PubMed ID: 35152897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decision-Making Model for Adaptive Impedance Control of Teleoperation Systems.
    Corredor J; Sofrony J; Peer A
    IEEE Trans Haptics; 2017; 10(1):5-16. PubMed ID: 27333611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exodex Adam-A Reconfigurable Dexterous Haptic User Interface for the Whole Hand.
    Lii NY; Pereira A; Dietl J; Stillfried G; Schmidt A; Beik-Mohammadi H; Baker T; Maier A; Pleintinger B; Chen Z; Elawad A; Mentzer L; Pineault A; Reisich P; Albu-Schäffer A
    Front Robot AI; 2021; 8():716598. PubMed ID: 35309724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Telerobotics and orbital laboratories: an end-to-end analysis and demonstration.
    Konkel CR; Miller CF
    Acta Astronaut; 1989 Oct; 19(10):827-34. PubMed ID: 11541163
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer.
    Adamides G; Katsanos C; Parmet Y; Christou G; Xenos M; Hadzilacos T; Edan Y
    Appl Ergon; 2017 Jul; 62():237-246. PubMed ID: 28411734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Size-Weight Illusion on Usability in Haptic Human-Robot Collaboration.
    Schmidtler J; Bengler K
    IEEE Trans Haptics; 2018; 11(1):85-96. PubMed ID: 28976323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task.
    Khurshid RP; Fitter NT; Fedalei EA; Kuchenbecker KJ
    IEEE Trans Haptics; 2017; 10(1):40-53. PubMed ID: 27249838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing robotic telesurgery with sensorless haptic feedback.
    Yilmaz N; Burkhart B; Deguet A; Kazanzides P; Tumerdem U
    Int J Comput Assist Radiol Surg; 2024 Jun; 19(6):1147-1155. PubMed ID: 38598140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Haptic Augmentation for Teleoperation through Virtual Grasping Points.
    Panzirsch M; Balachandran R; Weber B; Ferre M; Artigas J
    IEEE Trans Haptics; 2018; 11(3):400-416. PubMed ID: 29994289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards Haptic-Based Dual-Arm Manipulation.
    Turlapati SH; Campolo D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surgeon-Centered Analysis of Robot-Assisted Needle Driving Under Different Force Feedback Conditions.
    Bahar L; Sharon Y; Nisky I
    Front Neurorobot; 2019; 13():108. PubMed ID: 32038218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel master-slave intraocular surgical robot with force feedback.
    Zuo S; Wang Z; Zhang T; Chen B
    Int J Med Robot; 2021 Aug; 17(4):e2267. PubMed ID: 33887805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing the Localization of Uterine Leiomyomas Through Cutaneous Softness Rendering for Robot-Assisted Surgical Palpation Applications.
    Doria D; Fani S; Giannini A; Simoncini T; Bianchi M
    IEEE Trans Haptics; 2021; 14(3):503-512. PubMed ID: 33556016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tool/tissue interaction feedback modalities in robot-assisted lump localization.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3854-7. PubMed ID: 17946205
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual vs vibrotactile feedback for posture assessment during upper-limb robot-aided rehabilitation.
    Scotto di Luzio F; Lauretti C; Cordella F; Draicchio F; Zollo L
    Appl Ergon; 2020 Jan; 82():102950. PubMed ID: 31542573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.