These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 32746376)

  • 41. Neural dynamics of delayed feedback in robot teleoperation: insights from fNIRS analysis.
    Zhou T; Ye Y; Zhu Q; Vann W; Du J
    Front Hum Neurosci; 2024; 18():1338453. PubMed ID: 38952645
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Task-Level Authoring for Remote Robot Teleoperation.
    Senft E; Hagenow M; Welsh K; Radwin R; Zinn M; Gleicher M; Mutlu B
    Front Robot AI; 2021; 8():707149. PubMed ID: 34646866
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists.
    Garcia A DE; Sierra M SD; Gomez-Vargas D; Jiménez MF; Múnera M; Cifuentes CA
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069340
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Robonaut: a robot designed to work with humans in space.
    Bluethmann W; Ambrose R; Diftler M; Askew S; Huber E; Goza M; Rehnmark F; Lovchik C; Magruder D
    Auton Robots; 2003; 14(2-3):179-97. PubMed ID: 12703513
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A haptic pedal for surgery assistance.
    Díaz I; Gil JJ; Louredo M
    Comput Methods Programs Biomed; 2014 Sep; 116(2):97-104. PubMed ID: 24210869
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A system for bedside assistance that integrates a robotic bed and a mobile manipulator.
    Kapusta AS; Grice PM; Clever HM; Chitalia Y; Park D; Kemp CC
    PLoS One; 2019; 14(10):e0221854. PubMed ID: 31618205
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adding Haptic Feedback to Virtual Environments With a Cable-Driven Robot Improves Upper Limb Spatio-Temporal Parameters During a Manual Handling Task.
    Faure C; Fortin-Cote A; Robitaille N; Cardou P; Gosselin C; Laurendeau D; Mercier C; Bouyer L; McFadyen BJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2246-2254. PubMed ID: 32877337
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving manual skills in persons with disabilities (PWD) through a multimodal assistance system.
    Covarrubias M; Gatti E; Bordegoni M; Cugini U; Mansutti A
    Disabil Rehabil Assist Technol; 2014 Jul; 9(4):335-43. PubMed ID: 23692410
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bilateral teleoperation with object-adaptive mapping.
    Gao X; Silvério J; Calinon S; Li M; Xiao X
    Complex Intell Systems; 2022; 8(4):2983-2990. PubMed ID: 35935807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Lightweight and Affordable Wearable Haptic Controller for Robot-Assisted Microsurgery.
    Guo X; McFall F; Jiang P; Liu J; Lepora N; Zhang D
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732782
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Association of Individual Characteristics with Teleoperation Performance.
    Pan D; Zhang Y; Li Z; Tian Z
    Aerosp Med Hum Perform; 2016 Sep; 87(9):772-80. PubMed ID: 27634696
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hamlyn CRM: a compact master manipulator for surgical robot remote control.
    Zhang D; Liu J; Zhang L; Yang GZ
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):503-514. PubMed ID: 31956954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparison of the psychological effects of robot motion in physical and virtual environments.
    Sanders NE; Xie Z; Chen KB
    Appl Ergon; 2023 Oct; 112():104039. PubMed ID: 37320910
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dual Arm Co-Manipulation Architecture with Enhanced Human-Robot Communication for Large Part Manipulation.
    Ibarguren A; Eimontaite I; Outón JL; Fletcher S
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33137977
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-fidelity bilateral teleoperation systems and the effect of multimodal haptics.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1512-28. PubMed ID: 18179070
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot.
    McCain HG; Andary JF; Hewitt DR; Haley DC
    Acta Astronaut; 1991; 24():45-54. PubMed ID: 11540062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shared control of a medical robot with haptic guidance.
    Xiong L; Chng CB; Chui CK; Yu P; Li Y
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):137-147. PubMed ID: 27314590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Novel Training and Collaboration Integrated Framework for Human-Agent Teleoperation.
    Huang Z; Wang Z; Bai W; Huang Y; Sun L; Xiao B; Yeatman EM
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.