These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 32746380)
1. Evaluating the Efficiency of Six-DoF Haptic Rendering-Based Virtual Assembly Training. Zheng M; Zhao D; Barbic J IEEE Trans Haptics; 2021; 14(1):212-224. PubMed ID: 32746380 [TBL] [Abstract][Full Text] [Related]
2. Force quantification and simulation of pedicle screw tract palpation using direct visuo-haptic volume rendering. Zoller EI; Faludi B; Gerig N; Jost GF; Cattin PC; Rauter G Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1797-1805. PubMed ID: 32959159 [TBL] [Abstract][Full Text] [Related]
3. 6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields. Hongyi Xu ; Barbic J IEEE Trans Haptics; 2017; 10(2):151-161. PubMed ID: 28113519 [TBL] [Abstract][Full Text] [Related]
4. Continuous Collision Detection for Virtual Proxy Haptic Rendering of Deformable Triangular Mesh Models. Ding H; Mitake H; Hasegawa S IEEE Trans Haptics; 2019; 12(4):624-634. PubMed ID: 31425052 [TBL] [Abstract][Full Text] [Related]
5. Haptic Rendering of Diverse Tool-Tissue Contact Constraints During Dental Implantation Procedures. Zhao X; Zhu Z; Cong Y; Zhao Y; Zhang Y; Wang D Front Robot AI; 2020; 7():35. PubMed ID: 33501203 [TBL] [Abstract][Full Text] [Related]
6. Haptic-based training for tank gunnery using decoupled motion control. Liu G; Lu K; Zhang Y IEEE Comput Graph Appl; 2013; 33(2):73-9. PubMed ID: 24807942 [TBL] [Abstract][Full Text] [Related]
7. The effect of haptic degrees of freedom on task performance in virtual surgical environments. Forsslund J; Chan S; Selesnick J; Salisbury K; Silva RG; Blevins NH Stud Health Technol Inform; 2013; 184():129-35. PubMed ID: 23400144 [TBL] [Abstract][Full Text] [Related]
8. Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master. Singh J; Srinivasan AR; Neumann G; Kucukyilmaz A IEEE Trans Haptics; 2020; 13(1):246-252. PubMed ID: 32012028 [TBL] [Abstract][Full Text] [Related]
9. Six-DoF Haptic Rendering of Contact Between Geometrically Complex Reduced Deformable Models. Barbic J; James DL IEEE Trans Haptics; 2008; 1(1):39-52. PubMed ID: 27780152 [TBL] [Abstract][Full Text] [Related]
10. 6-DoF Haptic Rendering of Static Coulomb Friction Using Linear Programming. Zhao D; Li Y; Barbic J IEEE Trans Haptics; 2018 Feb; ():. PubMed ID: 29994515 [TBL] [Abstract][Full Text] [Related]
11. Six Degree-of-Freedom Haptic Simulation of a Stringed Musical Instrument for Triggering Sounds. Dangxiao Wang ; Xiaohan Zhao ; Youjiao Shi ; Yuru Zhang ; Jing Xiao IEEE Trans Haptics; 2017; 10(2):265-275. PubMed ID: 28113956 [TBL] [Abstract][Full Text] [Related]
12. Six degree-of-freedom haptic rendering using spatialized normal cone search. Johnson DE; Willemsen P; Cohen E IEEE Trans Vis Comput Graph; 2005; 11(6):661-70. PubMed ID: 16270859 [TBL] [Abstract][Full Text] [Related]
13. Real-time mandibular angle reduction surgical simulation with haptic rendering. Wang Q; Chen H; Wu W; Jin HY; Heng PA IEEE Trans Inf Technol Biomed; 2012 Nov; 16(6):1105-14. PubMed ID: 22987537 [TBL] [Abstract][Full Text] [Related]
14. Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models. Fortmeier D; Wilms M; Mastmeyer A; Handels H IEEE Trans Haptics; 2015; 8(4):371-83. PubMed ID: 26087498 [TBL] [Abstract][Full Text] [Related]
15. Multimodal Evaluation of the Differences between Real and Virtual Assemblies. Sagardia M; Hulin T IEEE Trans Haptics; 2018; 11(1):107-118. PubMed ID: 28829317 [TBL] [Abstract][Full Text] [Related]
16. Volume Haptics with Topology-Consistent Isosurfaces. Corenthy L; Otaduy MA; Pastor L; Garcia M IEEE Trans Haptics; 2015; 8(4):480-91. PubMed ID: 26276999 [TBL] [Abstract][Full Text] [Related]
17. Experience-dependent visual cue integration based on consistencies between visual and haptic percepts. Atkins JE; Fiser J; Jacobs RA Vision Res; 2001 Feb; 41(4):449-61. PubMed ID: 11166048 [TBL] [Abstract][Full Text] [Related]
18. A Position-Control Based Approach to Haptic Rendering of Stiff Objects. Wang Y; Feng L; Andersson K IEEE Trans Haptics; 2021; 14(3):646-659. PubMed ID: 33315572 [TBL] [Abstract][Full Text] [Related]
19. Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. Lin Y; Wang X; Wu F; Chen X; Wang C; Shen G J Biomed Inform; 2014 Apr; 48():122-9. PubMed ID: 24380817 [TBL] [Abstract][Full Text] [Related]
20. Contactless Haptic Display Through Magnetic Field Control. Lu X; Yan Y; Qi B; Qian H; Sun J; Quigley A IEEE Trans Haptics; 2022; 15(2):328-338. PubMed ID: 35171776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]