These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32746381)

  • 1. A Multisensory Approach to Present Phonemes as Language Through a Wearable Haptic Device.
    Dunkelberger N; Sullivan JL; Bradley J; Manickam I; Dasarathy G; Baraniuk R; O'Malley MK
    IEEE Trans Haptics; 2021; 14(1):188-199. PubMed ID: 32746381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Sensory Stimuli Improve Distinguishability of Cutaneous Haptic Cues.
    Sullivan JL; Dunkelberger N; Bradley J; Young J; Israr A; Lau F; Klumb K; Abnousi F; O'Malley MK
    IEEE Trans Haptics; 2020; 13(2):286-297. PubMed ID: 31217130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Interfering Cue Separation Distance and Amplitude on the Haptic Detection of Skin Stretch.
    K Low A; A Zook Z; J Fleck J; K O'Malley M
    IEEE Trans Haptics; 2021; 14(2):254-259. PubMed ID: 33891556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft Wearable Skin-Stretch Device for Haptic Feedback Using Twisted and Coiled Polymer Actuators.
    Chossat JB; Chen DKY; Park YL; Shull PB
    IEEE Trans Haptics; 2019; 12(4):521-532. PubMed ID: 31562105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Tactile Masking on Multi-Sensory Haptic Perception.
    Zook ZA; Fleck JJ; O'Malley MK
    IEEE Trans Haptics; 2022; 15(1):212-221. PubMed ID: 34529574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant Frequency Skin Stretch for Wearable Haptics.
    Shull PB; Tan T; Culbertson H; Zhu X; Okamura AM
    IEEE Trans Haptics; 2019; 12(3):247-256. PubMed ID: 31095499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Protactile-Inspired Wearable Haptic Device for Capturing the Core Functions of Communication.
    MacGavin B; Edwards T; Gorlewicz JL
    IEEE Trans Haptics; 2021; 14(2):279-284. PubMed ID: 33909573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Representational Similarity Analysis for Tracking Neural Correlates of Haptic Learning on a Multimodal Device.
    Macklin AS; Yau JM; Fischer-Baum S; O'Malley MK
    IEEE Trans Haptics; 2023; 16(3):424-435. PubMed ID: 37556331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of haptics and vision in human multisensory grasping.
    Camponogara I; Volcic R
    Cortex; 2021 Feb; 135():173-185. PubMed ID: 33383479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trust in haptic assistance: weighting visual and haptic cues based on error history.
    Gibo TL; Mugge W; Abbink DA
    Exp Brain Res; 2017 Aug; 235(8):2533-2546. PubMed ID: 28534068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel Wearable Device for Mindful Sensorimotor Training: Integrating Motor Decoding and Somatosensory Stimulation for Neurorehabilitation.
    Buist M; Damercheli S; Zbinden J; Truong MTN; Mastinu E; Ortiz-Catalan M
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1515-1523. PubMed ID: 38512736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Wearable Textile-Embedded Dielectric Elastomer Actuator Haptic Display.
    Lee DY; Jeong SH; Cohen AJ; Vogt DM; Kollosche M; Lansberry G; Mengüç Y; Israr A; Clarke DR; Wood RJ
    Soft Robot; 2022 Dec; 9(6):1186-1197. PubMed ID: 35856695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Getting Your Hands Dirty Outside the Lab: A Practical Primer for Conducting Wearable Vibrotactile Haptics Research.
    Blum JR; Fortin PE; Al Taha F; Alirezaee P; Demers M; Weill-Duflos A; Cooperstock JR
    IEEE Trans Haptics; 2019; 12(3):232-246. PubMed ID: 31352355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining Allowable Stimulus Ranges for Position and Force Controlled Cutaneous Cues.
    Clark JP; O'Malley MK
    IEEE Trans Haptics; 2023; 16(3):353-364. PubMed ID: 37314909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuo-haptic integration in object identification using novel objects.
    Desmarais G; Meade M; Wells T; Nadeau M
    Atten Percept Psychophys; 2017 Nov; 79(8):2478-2498. PubMed ID: 28744702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual uncertainty unveils the distinct role of haptic cues in multisensory grasping.
    Camponogara I; Volcic R
    eNeuro; 2022 May; 9(3):. PubMed ID: 35641223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization Performance of Multiple Vibrotactile Cues on Both Arms.
    Wang D; Peng C; Afzal N; Li W; Wu D; Zhang Y
    IEEE Trans Haptics; 2018; 11(1):97-106. PubMed ID: 28841557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Spatiotemporal and Multisensory Approach to Designing Wearable Clinical ICU Alarms.
    Sangari A; Bingham MA; Cummins M; Sood A; Tong A; Purcell P; Schlesinger JJ
    J Med Syst; 2023 Oct; 47(1):105. PubMed ID: 37847469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focused Vibrotactile Stimuli From a Wearable Sparse Array of Actuators.
    de Vlam V; Wiertlewski M; Vardar Y
    IEEE Trans Haptics; 2023; 16(4):511-517. PubMed ID: 37097798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanofluidic Instability-Driven Wearable Textile Vibrotactor.
    Fino N; Jumet B; Zook ZA; Preston DJ; O'Malley MK
    IEEE Trans Haptics; 2023; 16(4):530-535. PubMed ID: 37104109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.