These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32746444)

  • 1. In situ TEM modification of individual silicon nanowires and their charge transport mechanisms.
    Alam SB; Andersen CR; Panciera F; Nilausen AAS; Hansen O; Ross FM; Mølhave K
    Nanotechnology; 2020 Dec; 31(49):494002. PubMed ID: 32746444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The piezotronic effect of zinc oxide nanowires studied by in situ TEM.
    Yang S; Wang L; Tian X; Xu Z; Wang W; Bai X; Wang E
    Adv Mater; 2012 Sep; 24(34):4676-82. PubMed ID: 22488925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal breakdown of ZnTe nanowires.
    Davami K; Ghassemi HM; Yassar RS; Lee JS; Meyyappan M
    Chemphyschem; 2012 Jan; 13(1):347-52. PubMed ID: 22131283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of the surface migration of gold on the growth of silicon nanowires.
    Hannon JB; Kodambaka S; Ross FM; Tromp RM
    Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polaronic transport and current blockades in epitaxial silicide nanowires and nanowire arrays.
    Iancu V; Zhang XG; Kim TH; Menard LD; Kent PR; Woodson ME; Ramsey JM; Li AP; Weitering HH
    Nano Lett; 2013 Aug; 13(8):3684-9. PubMed ID: 23902411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ observations of nanoscale effects in germanium nanowire growth with ternary eutectic alloys.
    Biswas S; O'Regan C; Morris MA; Holmes JD
    Small; 2015 Jan; 11(1):103-11. PubMed ID: 25196560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties.
    Chiu CH; Huang CW; Chen JY; Huang YT; Hu JC; Chen LT; Hsin CL; Wu WW
    Nanoscale; 2013 Jun; 5(11):5086-92. PubMed ID: 23640615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging and analysis of nanowires.
    Bell DC; Wu Y; Barrelet CJ; Gradecak S; Xiang J; Timko BP; Lieber CM
    Microsc Res Tech; 2004 Aug; 64(5-6):373-89. PubMed ID: 15549698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of Schottky and Ohmic Au Nanocatalysts to ZnO Nanowires.
    Lord AM; Ramasse QM; Kepaptsoglou DM; Periwal P; Ross FM; Wilks SP
    Nano Lett; 2017 Nov; 17(11):6626-6636. PubMed ID: 29024594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlated and in-situ electrical transmission electron microscopy studies and related membrane-chip fabrication.
    Spies M; Sadre Momtaz Z; Lähnemann J; Anh Luong M; Fernandez B; Fournier T; Monroy E; I den Hertog M
    Nanotechnology; 2020 Nov; 31(47):472001. PubMed ID: 32503014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Device fabrication with solid-liquid-solid grown silicon nanowires.
    Lee EK; Choi BL; Park YD; Kuk Y; Kwon SY; Kim HJ
    Nanotechnology; 2008 May; 19(18):185701. PubMed ID: 21825697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Applied Voltages on the Charge Transport Properties in a ZnO Nanowire Field Effect Transistor.
    Yoon J; Huang F; Shin KH; Sohn JI; Hong WK
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31936145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH
    Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A platform for in-situ multi-probe electronic measurements and modification of nanodevices inside a transmission electron microscope.
    Xu TT; Ning ZY; Shi TW; Fu MQ; Wang JY; Chen Q
    Nanotechnology; 2014 Jun; 25(22):225702. PubMed ID: 24830433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ observation of morphological change in CdTe nano- and submicron wires.
    Davami K; Ghassemi HM; Sun X; Yassar RS; Lee JS; Meyyappan M
    Nanotechnology; 2011 Oct; 22(43):435204. PubMed ID: 21971180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time observation of the solid-liquid-vapor dissolution of individual tin(IV) oxide nanowires.
    Hudak BM; Chang YJ; Yu L; Li G; Edwards DN; Guiton BS
    ACS Nano; 2014 Jun; 8(6):5441-8. PubMed ID: 24818706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical observation of a thermo-morphic transition in a silicon nanowire.
    Choi SJ; Moon DI; Duarte JP; Ahn JH; Choi YK
    ACS Nano; 2012 Mar; 6(3):2378-84. PubMed ID: 22324745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires.
    Dan Y; Seo K; Takei K; Meza JH; Javey A; Crozier KB
    Nano Lett; 2011 Jun; 11(6):2527-32. PubMed ID: 21598980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-emission properties of individual ZnO nanowires studied in situ by transmission electron microscopy.
    Huang Y; Bai X; Zhang Y; Qi J; Gu Y; Liao Q
    J Phys Condens Matter; 2007 Apr; 19(17):176001. PubMed ID: 21690938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and Electronic Properties of InSb Nanowires Grown in Flexible Polycarbonate Membranes.
    Singh AP; Roccapriore K; Algarni Z; Salloom R; Golden TD; Philipose U
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31491898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.