BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 32746932)

  • 1. Knowledge-primed neural networks enable biologically interpretable deep learning on single-cell sequencing data.
    Fortelny N; Bock C
    Genome Biol; 2020 Aug; 21(1):190. PubMed ID: 32746932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data.
    Kinalis S; Nielsen FC; Winther O; Bagger FO
    BMC Bioinformatics; 2019 Jul; 20(1):379. PubMed ID: 31286861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating pathway knowledge with deep neural networks to reduce the dimensionality in single-cell RNA-seq data.
    Gundogdu P; Loucera C; Alamo-Alvarez I; Dopazo J; Nepomuceno I
    BioData Min; 2022 Jan; 15(1):1. PubMed ID: 34980200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.
    Chereda H; Bleckmann A; Menck K; Perera-Bel J; Stegmaier P; Auer F; Kramer F; Leha A; Beißbarth T
    Genome Med; 2021 Mar; 13(1):42. PubMed ID: 33706810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data.
    Xu F; Wang S; Dai X; Mundra PA; Zheng J
    Methods; 2021 May; 189():65-73. PubMed ID: 33039573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data.
    Wysocka M; Wysocki O; Zufferey M; Landers D; Freitas A
    BMC Bioinformatics; 2023 May; 24(1):198. PubMed ID: 37189058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis.
    Wang R; Jiang Y; Jin J; Yin C; Yu H; Wang F; Feng J; Su R; Nakai K; Zou Q; Wei L
    Nucleic Acids Res; 2023 Apr; 51(7):3017-3029. PubMed ID: 36796796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepTCR is a deep learning framework for revealing sequence concepts within T-cell repertoires.
    Sidhom JW; Larman HB; Pardoll DM; Baras AS
    Nat Commun; 2021 Mar; 12(1):1605. PubMed ID: 33707415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks.
    Shrivastava H; Zhang X; Song L; Aluru S
    J Comput Biol; 2022 Jan; 29(1):27-44. PubMed ID: 35050715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of Deep Learning on Single-cell RNA Sequencing Data Analysis: A Review.
    Brendel M; Su C; Bai Z; Zhang H; Elemento O; Wang F
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):814-835. PubMed ID: 36528240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biologically informed deep neural network for prostate cancer discovery.
    Elmarakeby HA; Hwang J; Arafeh R; Crowdis J; Gang S; Liu D; AlDubayan SH; Salari K; Kregel S; Richter C; Arnoff TE; Park J; Hahn WC; Van Allen EM
    Nature; 2021 Oct; 598(7880):348-352. PubMed ID: 34552244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data.
    Withnell E; Zhang X; Sun K; Guo Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34402865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interpretable single-cell transcription factor prediction based on deep learning with attention mechanism.
    Gong M; He Y; Wang M; Zhang Y; Ding C
    Comput Biol Chem; 2023 Oct; 106():107923. PubMed ID: 37598467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features.
    Wang CJ; Hamm CA; Savic LJ; Ferrante M; Schobert I; Schlachter T; Lin M; Weinreb JC; Duncan JS; Chapiro J; Letzen B
    Eur Radiol; 2019 Jul; 29(7):3348-3357. PubMed ID: 31093705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GenNet framework: interpretable deep learning for predicting phenotypes from genetic data.
    van Hilten A; Kushner SA; Kayser M; Ikram MA; Adams HHH; Klaver CCW; Niessen WJ; Roshchupkin GV
    Commun Biol; 2021 Sep; 4(1):1094. PubMed ID: 34535759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XMR: an explainable multimodal neural network for drug response prediction.
    Wang Z; Zhou Y; Zhang Y; Mo YK; Wang Y
    Front Bioinform; 2023; 3():1164482. PubMed ID: 37600972
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.