These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 32747547)
1. Convergent evolution of processivity in bacterial and fungal cellulases. Uchiyama T; Uchihashi T; Nakamura A; Watanabe H; Kaneko S; Samejima M; Igarashi K Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19896-19903. PubMed ID: 32747547 [TBL] [Abstract][Full Text] [Related]
2. Domain architecture divergence leads to functional divergence in binding and catalytic domains of bacterial and fungal cellobiohydrolases. Nakamura A; Ishiwata D; Visootsat A; Uchiyama T; Mizutani K; Kaneko S; Murata T; Igarashi K; Iino R J Biol Chem; 2020 Oct; 295(43):14606-14617. PubMed ID: 32816991 [TBL] [Abstract][Full Text] [Related]
3. The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important for initiation of degradation of crystalline cellulose. Nakamura A; Tsukada T; Auer S; Furuta T; Wada M; Koivula A; Igarashi K; Samejima M J Biol Chem; 2013 May; 288(19):13503-10. PubMed ID: 23532843 [TBL] [Abstract][Full Text] [Related]
4. Cellulose chain binding free energy drives the processive move of cellulases on the cellulose surface. Wang Y; Zhang S; Song X; Yao L Biotechnol Bioeng; 2016 Sep; 113(9):1873-80. PubMed ID: 26928155 [TBL] [Abstract][Full Text] [Related]
5. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. Vermaas JV; Crowley MF; Beckham GT; Payne CM J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779 [TBL] [Abstract][Full Text] [Related]
6. Direct in situ observation of synergism between cellulolytic enzymes during the biodegradation of crystalline cellulose fibers. Wang J; Quirk A; Lipkowski J; Dutcher JR; Clarke AJ Langmuir; 2013 Dec; 29(48):14997-5005. PubMed ID: 24195649 [TBL] [Abstract][Full Text] [Related]
8. Modeling the activity burst in the initial phase of cellulose hydrolysis by the processive cellobiohydrolase Cel7A. Petrášek Z; Eibinger M; Nidetzky B Biotechnol Bioeng; 2019 Mar; 116(3):515-525. PubMed ID: 30515756 [TBL] [Abstract][Full Text] [Related]
9. The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme- and substrate-dependent. Tokin R; Ipsen JØ; Westh P; Johansen KS Biotechnol Lett; 2020 Oct; 42(10):1975-1984. PubMed ID: 32458293 [TBL] [Abstract][Full Text] [Related]
10. pH profiles of cellulases depend on the substrate and architecture of the binding region. Røjel N; Kari J; Sørensen TH; Borch K; Westh P Biotechnol Bioeng; 2020 Feb; 117(2):382-391. PubMed ID: 31631319 [TBL] [Abstract][Full Text] [Related]
11. Single-molecule imaging analysis of elementary reaction steps of Trichoderma reesei cellobiohydrolase I (Cel7A) hydrolyzing crystalline cellulose Iα and IIII. Shibafuji Y; Nakamura A; Uchihashi T; Sugimoto N; Fukuda S; Watanabe H; Samejima M; Ando T; Noji H; Koivula A; Igarashi K; Iino R J Biol Chem; 2014 May; 289(20):14056-65. PubMed ID: 24692563 [TBL] [Abstract][Full Text] [Related]
12. Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Schiano-di-Cola C; Røjel N; Jensen K; Kari J; Sørensen TH; Borch K; Westh P J Biol Chem; 2019 Feb; 294(6):1807-1815. PubMed ID: 30538133 [TBL] [Abstract][Full Text] [Related]
13. Visualization of cellobiohydrolase I from Trichoderma reesei moving on crystalline cellulose using high-speed atomic force microscopy. Igarashi K; Uchihashi T; Koivula A; Wada M; Kimura S; Penttilä M; Ando T; Samejima M Methods Enzymol; 2012; 510():169-82. PubMed ID: 22608726 [TBL] [Abstract][Full Text] [Related]
14. Heterologous expression of Talaromyces emersonii cellobiohydrolase Cel7A in Trichoderma reesei increases the efficiency of corncob residues saccharification. Sun N; Qian Y; Wang W; Zhong Y; Dai M Biotechnol Lett; 2018 Jul; 40(7):1119-1126. PubMed ID: 29779122 [TBL] [Abstract][Full Text] [Related]
15. The dissociation mechanism of processive cellulases. Vermaas JV; Kont R; Beckham GT; Crowley MF; Gudmundsson M; Sandgren M; Ståhlberg J; Väljamäe P; Knott BC Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23061-23067. PubMed ID: 31666327 [TBL] [Abstract][Full Text] [Related]
16. Nanoscale dynamics of cellulose digestion by the cellobiohydrolase TrCel7A. Haviland ZK; Nong D; Vasquez Kuntz KL; Starr TJ; Ma D; Tien M; Anderson CT; Hancock WO J Biol Chem; 2021 Sep; 297(3):101029. PubMed ID: 34339742 [TBL] [Abstract][Full Text] [Related]
17. Molecular origins of reduced activity and binding commitment of processive cellulases and associated carbohydrate-binding proteins to cellulose III. Chundawat SPS; Nemmaru B; Hackl M; Brady SK; Hilton MA; Johnson MM; Chang S; Lang MJ; Huh H; Lee SH; Yarbrough JM; López CA; Gnanakaran S J Biol Chem; 2021; 296():100431. PubMed ID: 33610545 [TBL] [Abstract][Full Text] [Related]
18. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. Szijártó N; Siika-Aho M; Tenkanen M; Alapuranen M; Vehmaanperä J; Réczey K; Viikari L J Biotechnol; 2008 Sep; 136(3-4):140-7. PubMed ID: 18635283 [TBL] [Abstract][Full Text] [Related]
19. Processive Degradation of Crystalline Cellulose by a Multimodular Endoglucanase via a Wirewalking Mode. Zhang KD; Li W; Wang YF; Zheng YL; Tan FC; Ma XQ; Yao LS; Bayer EA; Wang LS; Li FL Biomacromolecules; 2018 May; 19(5):1686-1696. PubMed ID: 29617128 [TBL] [Abstract][Full Text] [Related]
20. Surface structural dynamics of enzymatic cellulose degradation, revealed by combined kinetic and atomic force microscopy studies. Eibinger M; Bubner P; Ganner T; Plank H; Nidetzky B FEBS J; 2014 Jan; 281(1):275-90. PubMed ID: 24320702 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]