These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32747547)

  • 41. Impact of cellulose properties on enzymatic degradation by bacterial GH48 enzymes: Structural and mechanistic insights from processive Bacillus licheniformis Cel48B cellulase.
    Araújo EA; Dias AHS; Kadowaki MAS; Piyadov V; Pellegrini VOA; Urio MB; Ramos LP; Skaf MS; Polikarpov I
    Carbohydr Polym; 2021 Jul; 264():118059. PubMed ID: 33910709
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Initial- and processive-cut products reveal cellobiohydrolase rate limitations and the role of companion enzymes.
    Fox JM; Levine SE; Clark DS; Blanch HW
    Biochemistry; 2012 Jan; 51(1):442-52. PubMed ID: 22103405
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cel48A from Thermobifida fusca: structure and site directed mutagenesis of key residues.
    Kostylev M; Alahuhta M; Chen M; Brunecky R; Himmel ME; Lunin VV; Brady J; Wilson DB
    Biotechnol Bioeng; 2014 Apr; 111(4):664-73. PubMed ID: 24264519
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cellulases adsorb reversibly on biomass lignin.
    Djajadi DT; Pihlajaniemi V; Rahikainen J; Kruus K; Meyer AS
    Biotechnol Bioeng; 2018 Dec; 115(12):2869-2880. PubMed ID: 30132790
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermostable beta-glycosidase-CBD fusion protein for biochemical analysis of cotton scouring efficiency.
    Ha JS; Lee YM; Choi SL; Song JJ; Shin CS; Kim JH; Lee SG
    J Microbiol Biotechnol; 2008 Mar; 18(3):443-8. PubMed ID: 18388460
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alternatives to Trichoderma reesei in biofuel production.
    Gusakov AV
    Trends Biotechnol; 2011 Sep; 29(9):419-25. PubMed ID: 21612834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
    Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP
    Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface.
    Igarashi K; Uchihashi T; Koivula A; Wada M; Kimura S; Okamoto T; Penttilä M; Ando T; Samejima M
    Science; 2011 Sep; 333(6047):1279-82. PubMed ID: 21885779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fungal cellulases.
    Payne CM; Knott BC; Mayes HB; Hansson H; Himmel ME; Sandgren M; Ståhlberg J; Beckham GT
    Chem Rev; 2015 Feb; 115(3):1308-448. PubMed ID: 25629559
    [No Abstract]   [Full Text] [Related]  

  • 50. Measuring processivity.
    Horn SJ; Sørlie M; Vårum KM; Väljamäe P; Eijsink VG
    Methods Enzymol; 2012; 510():69-95. PubMed ID: 22608722
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genomics review of holocellulose deconstruction by aspergilli.
    Segato F; Damásio AR; de Lucas RC; Squina FM; Prade RA
    Microbiol Mol Biol Rev; 2014 Dec; 78(4):588-613. PubMed ID: 25428936
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Concerted motions and large-scale structural fluctuations of Trichoderma reesei Cel7A cellobiohydrolase.
    Silveira RL; Skaf MS
    Phys Chem Chem Phys; 2018 Mar; 20(11):7498-7507. PubMed ID: 29488531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integration of cellulases into bacterial cellulose: Toward bioabsorbable cellulose composites.
    Hu Y; Catchmark JM
    J Biomed Mater Res B Appl Biomater; 2011 Apr; 97(1):114-23. PubMed ID: 21290589
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Real-time observation of the swelling and hydrolysis of a single crystalline cellulose fiber catalyzed by cellulase 7B from Trichoderma reesei.
    Wang J; Quirk A; Lipkowski J; Dutcher JR; Hill C; Mark A; Clarke AJ
    Langmuir; 2012 Jun; 28(25):9664-72. PubMed ID: 22646051
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single-molecule Imaging Analysis of Binding, Processive Movement, and Dissociation of Cellobiohydrolase Trichoderma reesei Cel6A and Its Domains on Crystalline Cellulose.
    Nakamura A; Tasaki T; Ishiwata D; Yamamoto M; Okuni Y; Visootsat A; Maximilien M; Noji H; Uchiyama T; Samejima M; Igarashi K; Iino R
    J Biol Chem; 2016 Oct; 291(43):22404-22413. PubMed ID: 27609516
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stachybotrys atra BP-A produces alkali-resistant and thermostable cellulases.
    Picart P; Diaz P; Pastor FI
    Antonie Van Leeuwenhoek; 2008 Aug; 94(2):307-16. PubMed ID: 18454347
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ imaging of single carbohydrate-binding modules on cellulose microfibrils.
    Dagel DJ; Liu YS; Zhong L; Luo Y; Himmel ME; Xu Q; Zeng Y; Ding SY; Smith S
    J Phys Chem B; 2011 Feb; 115(4):635-41. PubMed ID: 21162585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production.
    Saratale GD; Saratale RG; Lo YC; Chang JS
    Biotechnol Prog; 2010; 26(2):406-16. PubMed ID: 19941342
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Removal of
    Kołaczkowski BM; Schaller KS; Sørensen TH; Peters GHJ; Jensen K; Krogh KBRM; Westh P
    Biotechnol Biofuels; 2020; 13():136. PubMed ID: 32782472
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Complete saccharification of cellulose at high temperature using endocellulase and beta-glucosidase from Pyrococcus sp.
    Kim HW; Ishikawa K
    J Microbiol Biotechnol; 2010 May; 20(5):889-92. PubMed ID: 20519912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.