These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32747608)

  • 1. αβDCA method identifies unspecific binding but specific disruption of the group I intron by the StpA chaperone.
    Reinharz V; Tlusty T
    RNA; 2020 Nov; 26(11):1530-1540. PubMed ID: 32747608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA chaperone activity and RNA-binding properties of the E. coli protein StpA.
    Mayer O; Rajkowitsch L; Lorenz C; Konrat R; Schroeder R
    Nucleic Acids Res; 2007; 35(4):1257-69. PubMed ID: 17267410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of RNA structural stability on the RNA chaperone activity of the Escherichia coli protein StpA.
    Grossberger R; Mayer O; Waldsich C; Semrad K; Urschitz S; Schroeder R
    Nucleic Acids Res; 2005; 33(7):2280-9. PubMed ID: 15849314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding of the td pre-RNA with the help of the RNA chaperone StpA.
    Mayer O; Waldsich C; Grossberger R; Schroeder R
    Biochem Soc Trans; 2002 Nov; 30(Pt 6):1175-80. PubMed ID: 12440999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo.
    Waldsich C; Grossberger R; Schroeder R
    Genes Dev; 2002 Sep; 16(17):2300-12. PubMed ID: 12208852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The RNA chaperone StpA enables fast RNA refolding by destabilization of mutually exclusive base pairs within competing secondary structure elements.
    Hohmann KF; Blümler A; Heckel A; Fürtig B
    Nucleic Acids Res; 2021 Nov; 49(19):11337-11349. PubMed ID: 34614185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting RNA chaperone activity.
    Rajkowitsch L; Schroeder R
    RNA; 2007 Dec; 13(12):2053-60. PubMed ID: 17901153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of StpA-mediated RNA remodeling.
    Doetsch M; Gstrein T; Schroeder R; Fürtig B
    RNA Biol; 2010; 7(6):735-43. PubMed ID: 21057189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Domain structure and RNA annealing activity of the Escherichia coli regulatory protein StpA.
    Cusick ME; Belfort M
    Mol Microbiol; 1998 May; 28(4):847-57. PubMed ID: 9643551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Escherichia coli protein StpA stimulates self-splicing by promoting RNA assembly in vitro.
    Zhang A; Derbyshire V; Salvo JL; Belfort M
    RNA; 1995 Oct; 1(8):783-93. PubMed ID: 7493324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone-like Nucleoid-Structuring Protein (H-NS) Paralogue StpA Activates the Type I-E CRISPR-Cas System against Natural Transformation in Escherichia coli.
    Sun D; Mao X; Fei M; Chen Z; Zhu T; Qiu J
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32385085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assaying RNA chaperone activity in vivo using a novel RNA folding trap.
    Clodi E; Semrad K; Schroeder R
    EMBO J; 1999 Jul; 18(13):3776-82. PubMed ID: 10393192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics.
    Zhang A; Rimsky S; Reaban ME; Buc H; Belfort M
    EMBO J; 1996 Mar; 15(6):1340-9. PubMed ID: 8635467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential binding profiles of StpA in wild-type and h-ns mutant cells: a comparative analysis of cooperative partners by chromatin immunoprecipitation-microarray analysis.
    Uyar E; Kurokawa K; Yoshimura M; Ishikawa S; Ogasawara N; Oshima T
    J Bacteriol; 2009 Apr; 191(7):2388-91. PubMed ID: 19151137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives.
    Williams RM; Rimsky S; Buc H
    J Bacteriol; 1996 Aug; 178(15):4335-43. PubMed ID: 8755860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functions of the Hha and YdgT proteins in transcriptional silencing by the nucleoid proteins, H-NS and StpA, in Escherichia coli.
    Ueda T; Takahashi H; Uyar E; Ishikawa S; Ogasawara N; Oshima T
    DNA Res; 2013 Jun; 20(3):263-71. PubMed ID: 23543115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requirement for the molecular adapter function of StpA at the Escherichia coli bgl promoter depends upon the level of truncated H-NS protein.
    Free A; Porter ME; Deighan P; Dorman CJ
    Mol Microbiol; 2001 Nov; 42(4):903-17. PubMed ID: 11737635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study.
    Qu J; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Jun; 48(22):4926-36. PubMed ID: 19382746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential dependence of StpA on H-NS in autoregulation of stpA and in regulation of bgl.
    Wolf T; Janzen W; Blum C; Schnetz K
    J Bacteriol; 2006 Oct; 188(19):6728-38. PubMed ID: 16980475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the self-association and hetero-association interactions of H-NS and StpA from Enterobacteria.
    Leonard PG; Ono S; Gor J; Perkins SJ; Ladbury JE
    Mol Microbiol; 2009 Jul; 73(2):165-79. PubMed ID: 19508284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.