These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 32747659)
21. Rank-in: enabling integrative analysis across microarray and RNA-seq for cancer. Tang K; Ji X; Zhou M; Deng Z; Huang Y; Zheng G; Cao Z Nucleic Acids Res; 2021 Sep; 49(17):e99. PubMed ID: 34214174 [TBL] [Abstract][Full Text] [Related]
22. Gene expression prediction from histology images via hypergraph neural networks. Li B; Zhang Y; Wang Q; Zhang C; Li M; Wang G; Song Q Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39401144 [TBL] [Abstract][Full Text] [Related]
23. Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma. Park C; Na KJ; Choi H; Ock CY; Ha S; Kim M; Park S; Keam B; Kim TM; Paeng JC; Park IK; Kang CH; Kim DW; Cheon GJ; Kang KW; Kim YT; Heo DS Theranostics; 2020; 10(23):10838-10848. PubMed ID: 32929383 [No Abstract] [Full Text] [Related]
24. Elucidating transcriptomic profiles from single-cell RNA sequencing data using nature-inspired compressed sensing. Yu Z; Bian C; Liu G; Zhang S; Wong KC; Li X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33855366 [TBL] [Abstract][Full Text] [Related]
25. Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer. Lee SH; Song IH; Jang HJ Int J Cancer; 2021 Aug; 149(3):728-740. PubMed ID: 33851412 [TBL] [Abstract][Full Text] [Related]
26. XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data. Withnell E; Zhang X; Sun K; Guo Y Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34402865 [TBL] [Abstract][Full Text] [Related]
27. Robotic data acquisition with deep learning enables cell image-based prediction of transcriptomic phenotypes. Jin J; Ogawa T; Hojo N; Kryukov K; Shimizu K; Ikawa T; Imanishi T; Okazaki T; Shiroguchi K Proc Natl Acad Sci U S A; 2023 Jan; 120(1):e2210283120. PubMed ID: 36577074 [TBL] [Abstract][Full Text] [Related]
28. Network-based drug sensitivity prediction. Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891 [TBL] [Abstract][Full Text] [Related]
29. The impact of site-specific digital histology signatures on deep learning model accuracy and bias. Howard FM; Dolezal J; Kochanny S; Schulte J; Chen H; Heij L; Huo D; Nanda R; Olopade OI; Kather JN; Cipriani N; Grossman RL; Pearson AT Nat Commun; 2021 Jul; 12(1):4423. PubMed ID: 34285218 [TBL] [Abstract][Full Text] [Related]
30. ctGAN: combined transformation of gene expression and survival data with generative adversarial network. Kim J; Seok J Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980369 [TBL] [Abstract][Full Text] [Related]
31. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492 [TBL] [Abstract][Full Text] [Related]
32. Automated Diagnosis of Lymphoma with Digital Pathology Images Using Deep Learning. Achi HE; Belousova T; Chen L; Wahed A; Wang I; Hu Z; Kanaan Z; Rios A; Nguyen AND Ann Clin Lab Sci; 2019 Mar; 49(2):153-160. PubMed ID: 31028058 [TBL] [Abstract][Full Text] [Related]
33. Predicting Molecular Phenotypes from Histopathology Images: A Transcriptome-Wide Expression-Morphology Analysis in Breast Cancer. Wang Y; Kartasalo K; Weitz P; Ács B; Valkonen M; Larsson C; Ruusuvuori P; Hartman J; Rantalainen M Cancer Res; 2021 Oct; 81(19):5115-5126. PubMed ID: 34341074 [TBL] [Abstract][Full Text] [Related]
34. Exploring microRNA Regulation of Cancer with Context-Aware Deep Cancer Classifier. Pyman B; Sedghi A; Azizi S; Tyryshkin K; Renwick N; Mousavi P Pac Symp Biocomput; 2019; 24():160-171. PubMed ID: 30864319 [TBL] [Abstract][Full Text] [Related]
35. Fast and accurate tumor segmentation of histology images using persistent homology and deep convolutional features. Qaiser T; Tsang YW; Taniyama D; Sakamoto N; Nakane K; Epstein D; Rajpoot N Med Image Anal; 2019 Jul; 55():1-14. PubMed ID: 30991188 [TBL] [Abstract][Full Text] [Related]
36. Detection of Lung Cancer Lymph Node Metastases from Whole-Slide Histopathologic Images Using a Two-Step Deep Learning Approach. Pham HHN; Futakuchi M; Bychkov A; Furukawa T; Kuroda K; Fukuoka J Am J Pathol; 2019 Dec; 189(12):2428-2439. PubMed ID: 31541645 [TBL] [Abstract][Full Text] [Related]
37. Impact of rescanning and normalization on convolutional neural network performance in multi-center, whole-slide classification of prostate cancer. Swiderska-Chadaj Z; de Bel T; Blanchet L; Baidoshvili A; Vossen D; van der Laak J; Litjens G Sci Rep; 2020 Sep; 10(1):14398. PubMed ID: 32873856 [TBL] [Abstract][Full Text] [Related]
38. Deep learning detects genetic alterations in cancer histology generated by adversarial networks. Krause J; Grabsch HI; Kloor M; Jendrusch M; Echle A; Buelow RD; Boor P; Luedde T; Brinker TJ; Trautwein C; Pearson AT; Quirke P; Jenniskens J; Offermans K; van den Brandt PA; Kather JN J Pathol; 2021 May; 254(1):70-79. PubMed ID: 33565124 [TBL] [Abstract][Full Text] [Related]
39. Spatial transcriptomics inferred from pathology whole-slide images links tumor heterogeneity to survival in breast and lung cancer. Levy-Jurgenson A; Tekpli X; Kristensen VN; Yakhini Z Sci Rep; 2020 Nov; 10(1):18802. PubMed ID: 33139755 [TBL] [Abstract][Full Text] [Related]
40. A Linear Regression and Deep Learning Approach for Detecting Reliable Genetic Alterations in Cancer Using DNA Methylation and Gene Expression Data. Mallik S; Seth S; Bhadra T; Zhao Z Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32806782 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]