BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32747712)

  • 1. Engineered immunological niches to monitor disease activity and treatment efficacy in relapsing multiple sclerosis.
    Morris AH; Hughes KR; Oakes RS; Cai MM; Miller SD; Irani DN; Shea LD
    Nat Commun; 2020 Aug; 11(1):3871. PubMed ID: 32747712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CXCL13 antibody for the treatment of autoimmune disorders.
    Klimatcheva E; Pandina T; Reilly C; Torno S; Bussler H; Scrivens M; Jonason A; Mallow C; Doherty M; Paris M; Smith ES; Zauderer M
    BMC Immunol; 2015 Feb; 16(1):6. PubMed ID: 25879435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibody-mediated inhibition of TNFR1 attenuates disease in a mouse model of multiple sclerosis.
    Williams SK; Maier O; Fischer R; Fairless R; Hochmeister S; Stojic A; Pick L; Haar D; Musiol S; Storch MK; Pfizenmaier K; Diem R
    PLoS One; 2014; 9(2):e90117. PubMed ID: 24587232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Thamilarasan M; Koczan D; Hecker M; Paap B; Zettl UK
    Autoimmun Rev; 2012 Jan; 11(3):174-9. PubMed ID: 21621006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hematopoietic stem cell transplantation in multiple sclerosis: experimental evidence to rethink the procedures.
    Karussis D; Slavin S
    J Neurol Sci; 2004 Aug; 223(1):59-64. PubMed ID: 15261562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene Therapy Approaches in an Autoimmune Demyelinating Disease: Multiple Sclerosis.
    Islam MA; Kundu S; Hassan R
    Curr Gene Ther; 2020; 19(6):376-385. PubMed ID: 32141417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune-based therapy of multiple sclerosis.
    Kaufman MD
    N C Med J; 1995 Aug; 56(8):379-84. PubMed ID: 7566191
    [No Abstract]   [Full Text] [Related]  

  • 8. Epithelial V-like antigen mediates efficacy of anti-alpha₄ integrin treatment in a mouse model of multiple sclerosis.
    Wright E; Rahgozar K; Hallworth N; Lanker S; Carrithers MD
    PLoS One; 2013; 8(8):e70954. PubMed ID: 23951051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathogenic mechanisms and experimental models of multiple sclerosis.
    Slavin A; Kelly-Modis L; Labadia M; Ryan K; Brown ML
    Autoimmunity; 2010 Nov; 43(7):504-13. PubMed ID: 20380590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of multiple sclerosis: lessons learned in a non-human primate.
    't Hart BA; Laman JD; Bauer J; Blezer E; van Kooyk Y; Hintzen RQ
    Lancet Neurol; 2004 Oct; 3(10):588-97. PubMed ID: 15380155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural killer T cells in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis.
    Van Kaer L; Wu L; Parekh VV
    Immunology; 2015 Sep; 146(1):1-10. PubMed ID: 26032048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population. Implications for secondary autoimmunity of alemtuzumab in multiple sclerosis.
    von Kutzleben S; Pryce G; Giovannoni G; Baker D
    Immunology; 2017 Apr; 150(4):444-455. PubMed ID: 27925187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplantation of autologous adipose stem cells lacks therapeutic efficacy in the experimental autoimmune encephalomyelitis model.
    Zhang X; Bowles AC; Semon JA; Scruggs BA; Zhang S; Strong AL; Gimble JM; Bunnell BA
    PLoS One; 2014; 9(1):e85007. PubMed ID: 24465465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. T-cell based immunotherapy in experimental autoimmune encephalomyelitis and multiple sclerosis.
    O'Brien K; Gran B; Rostami A
    Immunotherapy; 2010 Jan; 2(1):99-115. PubMed ID: 20231863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental autoimmune encephalomyelitis].
    Cornet A; Vizler C; Liblau R
    Rev Neurol (Paris); 1998 Sep; 154(8-9):586-91. PubMed ID: 9809373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monoclonal antibody therapy in experimental allergic encephalomyelitis and multiple sclerosis.
    Zhang X; Hupperts R; De Baets M
    Immunol Res; 2003; 28(1):61-78. PubMed ID: 12947225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenesis of neuroimmunologic diseases. Experimental models.
    Constantinescu CS; Hilliard B; Fujioka T; Bhopale MK; Calida D; Rostami AM
    Immunol Res; 1998; 17(1-2):217-27. PubMed ID: 9479583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of chronic allergic encephalomyelitis: relevance to multiple sclerosis.
    Raine CS; Traugott U; Stone SH
    Science; 1978 Aug; 201(4354):445-8. PubMed ID: 78524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-CD48 Monoclonal Antibody Attenuates Experimental Autoimmune Encephalomyelitis by Limiting the Number of Pathogenic CD4+ T Cells.
    McArdel SL; Brown DR; Sobel RA; Sharpe AH
    J Immunol; 2016 Oct; 197(8):3038-3048. PubMed ID: 27581174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A network analysis of the human T-cell activation gene network identifies JAGGED1 as a therapeutic target for autoimmune diseases.
    Palacios R; Goni J; Martinez-Forero I; Iranzo J; Sepulcre J; Melero I; Villoslada P
    PLoS One; 2007 Nov; 2(11):e1222. PubMed ID: 18030350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.