These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 32747744)
1. A framework based on deep neural networks to extract anatomy of mosquitoes from images. Minakshi M; Bharti P; Bhuiyan T; Kariev S; Chellappan S Sci Rep; 2020 Aug; 10(1):13059. PubMed ID: 32747744 [TBL] [Abstract][Full Text] [Related]
2. A convolutional neural network to identify mosquito species (Diptera: Culicidae) of the genus Aedes by wing images. Sauer FG; Werny M; Nolte K; Villacañas de Castro C; Becker N; Kiel E; Lühken R Sci Rep; 2024 Feb; 14(1):3094. PubMed ID: 38326355 [TBL] [Abstract][Full Text] [Related]
3. Robust mosquito species identification from diverse body and wing images using deep learning. Nolte K; Sauer FG; Baumbach J; Kollmannsberger P; Lins C; Lühken R Parasit Vectors; 2024 Sep; 17(1):372. PubMed ID: 39223629 [TBL] [Abstract][Full Text] [Related]
4. Delimiting cryptic morphological variation among human malaria vector species using convolutional neural networks. Couret J; Moreira DC; Bernier D; Loberti AM; Dotson EM; Alvarez M PLoS Negl Trop Dis; 2020 Dec; 14(12):e0008904. PubMed ID: 33332415 [TBL] [Abstract][Full Text] [Related]
6. BRR-Net: A tandem architectural CNN-RNN for automatic body region localization in CT images. Agrawal V; Udupa J; Tong Y; Torigian D Med Phys; 2020 Oct; 47(10):5020-5031. PubMed ID: 32761899 [TBL] [Abstract][Full Text] [Related]
7. Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection. Goodwin A; Padmanabhan S; Hira S; Glancey M; Slinowsky M; Immidisetti R; Scavo L; Brey J; Sai Sudhakar BMM; Ford T; Heier C; Linton YM; Pecor DB; Caicedo-Quiroga L; Acharya S Sci Rep; 2021 Jul; 11(1):13656. PubMed ID: 34211009 [TBL] [Abstract][Full Text] [Related]
8. Optimization of convolutional neural network hyperparameters for automatic classification of adult mosquitoes. Motta D; Santos AÁB; Machado BAS; Ribeiro-Filho OGV; Camargo LOA; Valdenegro-Toro MA; Kirchner F; Badaró R PLoS One; 2020; 15(7):e0234959. PubMed ID: 32663230 [TBL] [Abstract][Full Text] [Related]
9. Automatic point detection on cephalograms using convolutional neural networks: A two-step method. Hori M; Jincho M; Hori T; Sekine H; Kato A; Miyazawa K; Kawai T Dent Mater J; 2024 Sep; 43(5):701-710. PubMed ID: 39231691 [TBL] [Abstract][Full Text] [Related]
10. Deep learning for identifying bee species from images of wings and pinned specimens. Spiesman BJ; Gratton C; Gratton E; Hines H PLoS One; 2024; 19(5):e0303383. PubMed ID: 38805521 [TBL] [Abstract][Full Text] [Related]
11. Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks. Lee JH; Yu HJ; Kim MJ; Kim JW; Choi J BMC Oral Health; 2020 Oct; 20(1):270. PubMed ID: 33028287 [TBL] [Abstract][Full Text] [Related]
12. Community-based mosquito surveillance: an automatic mosquito-on-human-skin recognition system with a deep learning algorithm. Ong SQ; Nair G; Yusof UK; Ahmad H Pest Manag Sci; 2022 Oct; 78(10):4092-4104. PubMed ID: 35650172 [TBL] [Abstract][Full Text] [Related]
13. Learning low-dose CT degradation from unpaired data with flow-based model. Liu X; Liang X; Deng L; Tan S; Xie Y Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375 [TBL] [Abstract][Full Text] [Related]
14. Lung tumor segmentation in 4D CT images using motion convolutional neural networks. Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001 [TBL] [Abstract][Full Text] [Related]
15. Deep learning identification for citizen science surveillance of tiger mosquitoes. Pataki BA; Garriga J; Eritja R; Palmer JRB; Bartumeus F; Csabai I Sci Rep; 2021 Feb; 11(1):4718. PubMed ID: 33633197 [TBL] [Abstract][Full Text] [Related]
16. Classification and Morphological Analysis of Vector Mosquitoes using Deep Convolutional Neural Networks. Park J; Kim DI; Choi B; Kang W; Kwon HW Sci Rep; 2020 Jan; 10(1):1012. PubMed ID: 31974419 [TBL] [Abstract][Full Text] [Related]
17. Technical note: Phantom-based training framework for convolutional neural network CT noise reduction. Huber NR; Missert AD; Gong H; Leng S; Yu L; McCollough CH Med Phys; 2023 Feb; 50(2):821-830. PubMed ID: 36385704 [TBL] [Abstract][Full Text] [Related]
18. Deep neural networks for automated damage classification in image-based visual data of reinforced concrete structures. Fan CL Heliyon; 2024 Oct; 10(19):e38104. PubMed ID: 39386784 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning-Based Regression and Classification for Automatic Landmark Localization in Medical Images. Noothout JMH; De Vos BD; Wolterink JM; Postma EM; Smeets PAM; Takx RAP; Leiner T; Viergever MA; Isgum I IEEE Trans Med Imaging; 2020 Dec; 39(12):4011-4022. PubMed ID: 32746142 [TBL] [Abstract][Full Text] [Related]
20. Separation of bones from soft tissue in chest radiographs: Anatomy-specific orientation-frequency-specific deep neural network convolution. Zarshenas A; Liu J; Forti P; Suzuki K Med Phys; 2019 May; 46(5):2232-2242. PubMed ID: 30848498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]