BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1928 related articles for article (PubMed ID: 32747759)

  • 1. Generalizing RNA velocity to transient cell states through dynamical modeling.
    Bergen V; Lange M; Peidli S; Wolf FA; Theis FJ
    Nat Biotechnol; 2020 Dec; 38(12):1408-1414. PubMed ID: 32747759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepVelo: deep learning extends RNA velocity to multi-lineage systems with cell-specific kinetics.
    Cui H; Maan H; Vladoiu MC; Zhang J; Taylor MD; Wang B
    Genome Biol; 2024 Jan; 25(1):27. PubMed ID: 38243313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Guide to Trajectory Inference and RNA Velocity.
    Weiler P; Van den Berge K; Street K; Tiberi S
    Methods Mol Biol; 2023; 2584():269-292. PubMed ID: 36495456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TFvelo: gene regulation inspired RNA velocity estimation.
    Li J; Pan X; Yuan Y; Shen HB
    Nat Commun; 2024 Feb; 15(1):1387. PubMed ID: 38360714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA velocity of single cells.
    La Manno G; Soldatov R; Zeisel A; Braun E; Hochgerner H; Petukhov V; Lidschreiber K; Kastriti ME; Lönnerberg P; Furlan A; Fan J; Borm LE; Liu Z; van Bruggen D; Guo J; He X; Barker R; Sundström E; Castelo-Branco G; Cramer P; Adameyko I; Linnarsson S; Kharchenko PV
    Nature; 2018 Aug; 560(7719):494-498. PubMed ID: 30089906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the Hippocampal Neurogenic Niche.
    Artegiani B; Lyubimova A; Muraro M; van Es JH; van Oudenaarden A; Clevers H
    Cell Rep; 2017 Dec; 21(11):3271-3284. PubMed ID: 29241552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-Cell Transcriptomics Characterizes Cell Types in the Subventricular Zone and Uncovers Molecular Defects Impairing Adult Neurogenesis.
    Zywitza V; Misios A; Bunatyan L; Willnow TE; Rajewsky N
    Cell Rep; 2018 Nov; 25(9):2457-2469.e8. PubMed ID: 30485812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis.
    Bastidas-Ponce A; Tritschler S; Dony L; Scheibner K; Tarquis-Medina M; Salinno C; Schirge S; Burtscher I; Böttcher A; Theis FJ; Lickert H; Bakhti M
    Development; 2019 Jun; 146(12):. PubMed ID: 31160421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nascent RNA kinetics: Transient and steady state behavior of models of transcription.
    Choubey S
    Phys Rev E; 2018 Feb; 97(2-1):022402. PubMed ID: 29548128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamical Systems Model of RNA Velocity Improves Inference of Single-cell Trajectory, Pseudo-time and Gene Regulation.
    Liu R; Pisco AO; Braun E; Linnarsson S; Zou J
    J Mol Biol; 2022 Aug; 434(15):167606. PubMed ID: 35489382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracing the molecular basis of transcriptional dynamics in noisy data by using an experiment-based mathematical model.
    Rybakova KN; Tomaszewska A; van Mourik S; Blom J; Westerhoff HV; Carlberg C; Bruggeman FJ
    Nucleic Acids Res; 2015 Jan; 43(1):153-61. PubMed ID: 25477385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural stem cell- and neurogenesis-related gene expression profiles in the young and aged dentate gyrus.
    Shetty GA; Hattiangady B; Shetty AK
    Age (Dordr); 2013 Dec; 35(6):2165-76. PubMed ID: 23322452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide modeling of transcription kinetics reveals patterns of RNA production delays.
    Honkela A; Peltonen J; Topa H; Charapitsa I; Matarese F; Grote K; Stunnenberg HG; Reid G; Lawrence ND; Rattray M
    Proc Natl Acad Sci U S A; 2015 Oct; 112(42):13115-20. PubMed ID: 26438844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics.
    Farrell S; Mani M; Goyal S
    Cell Rep Methods; 2023 Sep; 3(9):100581. PubMed ID: 37708894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational strategy for predicting lineage specifiers in stem cell subpopulations.
    Okawa S; del Sol A
    Stem Cell Res; 2015 Sep; 15(2):427-34. PubMed ID: 26368290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global donor and acceptor splicing site kinetics in human cells.
    Wachutka L; Caizzi L; Gagneur J; Cramer P
    Elife; 2019 Apr; 8():. PubMed ID: 31025937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis.
    Lim DA; Suárez-Fariñas M; Naef F; Hacker CR; Menn B; Takebayashi H; Magnasco M; Patil N; Alvarez-Buylla A
    Mol Cell Neurosci; 2006 Jan; 31(1):131-48. PubMed ID: 16330219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Minimal Stochastic Model of Transcriptional and Splicing Regulation.
    Giaretta A
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2357-2360. PubMed ID: 33018480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells.
    Cao Z; Grima R
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4682-4692. PubMed ID: 32071224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data.
    Kim JK; Marioni JC
    Genome Biol; 2013 Jan; 14(1):R7. PubMed ID: 23360624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 97.