These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32747883)

  • 21. Dielectric Relaxation of Spherical Polyelectrolyte Brushes: Movement of Counterions and Electrical Properties of the Brush Layer.
    Wu H; Zhao K
    Langmuir; 2015 Aug; 31(31):8566-76. PubMed ID: 26172222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyelectrolyte brushes in external fields: molecular dynamics simulations and mean-field theory.
    Merlitz H; Li C; Wu C; Sommer JU
    Soft Matter; 2015 Jul; 11(28):5688-96. PubMed ID: 26096075
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of counterion fluctuations in a polyelectrolyte brush.
    Santangelo CD; Lau AW
    Eur Phys J E Soft Matter; 2004 Apr; 13(4):335-44. PubMed ID: 15170532
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrokinetic energy conversion in nanochannels grafted with pH-responsive polyelectrolyte brushes modelled using augmented strong stretching theory.
    Sachar HS; Sivasankar VS; Das S
    Soft Matter; 2019 Jul; 15(29):5973-5986. PubMed ID: 31290913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamics, electrostatics, and ionic current in nanochannels grafted with pH-responsive end-charged polyelectrolyte brushes.
    Chen G; Das S
    Electrophoresis; 2017 Mar; 38(5):720-729. PubMed ID: 27897317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of Counterion Valence on Conformational Behavior of Spherical Polyelectrolyte Brushes Confined between Two Parallel Walls.
    Li L; Cao Q; Zuo C
    Polymers (Basel); 2018 Mar; 10(4):. PubMed ID: 30966398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anomalous Shrinking-Swelling of Nanoconfined End-Charged Polyelectrolyte Brushes: Interplay of Confinement and Electrostatic Effects.
    Chen G; Das S
    J Phys Chem B; 2016 Jul; 120(27):6848-57. PubMed ID: 27322913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the pH Response of Weak Polyelectrolyte Brushes with Specific Anion Effects.
    Zhang J; Cai H; Tang L; Liu G
    Langmuir; 2018 Oct; 34(41):12419-12427. PubMed ID: 30220208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydration in Weak Polyelectrolyte Brushes.
    Deodhar C; Soto-Cantu E; Uhrig D; Bonnesen P; Lokitz BS; Ankner JF; Kilbey SM
    ACS Macro Lett; 2013 May; 2(5):398-402. PubMed ID: 35581845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Counterion-Mediated Hydrogen Bonding on Polyelectrolytes at the Solid/Water Interface: Current Understanding and Perspectives.
    Zhang J; Hua Z; Liu G
    Langmuir; 2023 Feb; 39(8):2881-2889. PubMed ID: 36780613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime.
    Li H; Chen G; Das S
    Colloids Surf B Biointerfaces; 2016 Nov; 147():180-190. PubMed ID: 27543690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In-situ investigation of the adsorption of globular model proteins on stimuli-responsive binary polyelectrolyte brushes.
    Uhlmann P; Houbenov N; Brenner N; Grundke K; Burkert S; Stamm M
    Langmuir; 2007 Jan; 23(1):57-64. PubMed ID: 17190485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface-Immobilized Interpolyelectrolyte Complexes Formed by Polyelectrolyte Brushes.
    Rumyantsev AM; Zhulina EB; Borisov OV
    ACS Macro Lett; 2023 Dec; 12(12):1727-1732. PubMed ID: 38061050
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overscreening, Co-Ion-Dominated Electroosmosis, and Electric Field Strength Mediated Flow Reversal in Polyelectrolyte Brush Functionalized Nanochannels.
    Pial TH; Sachar HS; Desai PR; Das S
    ACS Nano; 2021 Apr; 15(4):6507-6516. PubMed ID: 33797221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unveiling the Role of Electrostatic Forces on Attraction between Opposing Polyelectrolyte Brushes.
    Prusty D; Gallegos A; Wu J
    Langmuir; 2024 Jan; 40(4):2064-2078. PubMed ID: 38236763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strong stretching theory for pH-responsive polyelectrolyte brushes in large salt concentrations.
    Etha SA; Sivasankar VS; Sachar HS; Das S
    Phys Chem Chem Phys; 2020 Jun; 22(24):13536-13553. PubMed ID: 32510082
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface morphologies of spherical polyelectrolyte brushes induced by trivalent salt ions.
    Hao QH; Xia G; Tan HG; Chen EQ; Yang S
    Phys Chem Chem Phys; 2018 Nov; 20(41):26542-26551. PubMed ID: 30306970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-linear osmotic brush regime: simulations and mean-field theory.
    Naji A; Netz RR; Seidel C
    Eur Phys J E Soft Matter; 2003 Oct; 12(2):223-237. PubMed ID: 15007659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical Chain Rearrangement: What Happens When Polymers in Brushes Have a Charge Gradient?
    Smook LA; de Beer S
    Langmuir; 2024 Feb; 40(8):4142-4151. PubMed ID: 38355408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.