These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Prediction of structural failure of tibial bone models under physiological loads: effect of CT density-modulus relationships. Tuncer M; Hansen UN; Amis AA Med Eng Phys; 2014 Aug; 36(8):991-7; discussion 991. PubMed ID: 24907128 [TBL] [Abstract][Full Text] [Related]
64. Performance of QCT-Derived scapula finite element models in predicting local displacements using digital volume correlation. Kusins J; Knowles N; Ryan M; Dall'Ara E; Ferreira L J Mech Behav Biomed Mater; 2019 Sep; 97():339-345. PubMed ID: 31153115 [TBL] [Abstract][Full Text] [Related]
65. Load-induced changes in bone stiffness and cancellous and cortical bone mass following tibial compression diminish with age in female mice. Main RP; Lynch ME; van der Meulen MC J Exp Biol; 2014 May; 217(Pt 10):1775-83. PubMed ID: 24577445 [TBL] [Abstract][Full Text] [Related]
66. Peri-implant bone adaptations to overloading in rat tibiae: experimental investigations and numerical predictions. Piccinini M; Cugnoni J; Botsis J; Ammann P; Wiskott A Clin Oral Implants Res; 2016 Nov; 27(11):1444-1453. PubMed ID: 26864329 [TBL] [Abstract][Full Text] [Related]
67. Study on the Long Bone Failure Behaviors Under the Indenter Rigid-Contact by Experiment Analysis and Subject-Specific Simulation. Du X; Jiang B; Zhang G; Chou CC; Bai Z J Biomech Eng; 2021 Feb; 143(2):. PubMed ID: 32839823 [TBL] [Abstract][Full Text] [Related]
68. Experimental validation of a finite element model of a human cadaveric tibia. Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865 [TBL] [Abstract][Full Text] [Related]
69. Experimental validation of finite element simulation of a new custom-designed fixation plate to treat mandibular angle fracture. Xu X; Cheng KJ; Liu YF; Fan YY; Wang JH; Wang R; Baur DA; Jiang XF; Dong XT Biomed Eng Online; 2021 Feb; 20(1):15. PubMed ID: 33546713 [TBL] [Abstract][Full Text] [Related]
70. Changes in geometrical and biomechanical properties of immature male and female rat tibia. Zernicke RF; Hou JC; Vailas AC; Nishimoto M; Patel S; Shaw SR Aviat Space Environ Med; 1990 Sep; 61(9):814-20. PubMed ID: 2241747 [TBL] [Abstract][Full Text] [Related]
71. Quantifying the regional variations in the mechanical properties of cancellous bone of the tibia using indentation testing and quantitative computed tomographic imaging. Vijayakumar V; Quenneville CE Proc Inst Mech Eng H; 2016 Jun; 230(6):588-93. PubMed ID: 27068841 [TBL] [Abstract][Full Text] [Related]
72. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level. Rieger R; Auregan JC; Hoc T Morphologie; 2018 Mar; 102(336):12-20. PubMed ID: 28893491 [TBL] [Abstract][Full Text] [Related]
73. Mechanical conditions in the internal stabilization of proximal tibial defects. Duda GN; Mandruzzato F; Heller M; Kassi JP; Khodadadyan C; Haas NP Clin Biomech (Bristol, Avon); 2002 Jan; 17(1):64-72. PubMed ID: 11779648 [TBL] [Abstract][Full Text] [Related]
74. Comparison between external locking plate fixation and conventional external fixation for extraarticular proximal tibial fractures: a finite element analysis. Blažević D; Kodvanj J; Adamović P; Vidović D; Trobonjača Z; Sabalić S J Orthop Surg Res; 2022 Jan; 17(1):16. PubMed ID: 35016716 [TBL] [Abstract][Full Text] [Related]
75. Development of a validated glenoid trabecular density-modulus relationship. Knowles NK; G Langohr GD; Faieghi M; Nelson A; Ferreira LM J Mech Behav Biomed Mater; 2019 Feb; 90():140-145. PubMed ID: 30366304 [TBL] [Abstract][Full Text] [Related]
76. Integrating micro CT indices, CT imaging and computational modelling to assess the mechanical performance of fluoride treated bone. Sreenivasan D; Watson M; Callon K; Dray M; Das R; Grey A; Cornish J; Fernandez J Med Eng Phys; 2013 Dec; 35(12):1793-800. PubMed ID: 23993994 [TBL] [Abstract][Full Text] [Related]
77. Development and initial evaluation of a finite element model of the pediatric craniocervical junction. Phuntsok R; Mazur MD; Ellis BJ; Ravindra VM; Brockmeyer DL J Neurosurg Pediatr; 2016 Apr; 17(4):497-503. PubMed ID: 26684768 [TBL] [Abstract][Full Text] [Related]
78. A method of determining bending properties of poultry long bones using beam analysis and micro-CT data. Vaughan PE; Orth MW; Haut RC; Karcher DM Poult Sci; 2016 Jan; 95(1):207-12. PubMed ID: 26794840 [TBL] [Abstract][Full Text] [Related]
79. A novel underuse model shows that inactivity but not ovariectomy determines the deteriorated material properties and geometry of cortical bone in the tibia of adult rats. Miyagawa K; Kozai Y; Ito Y; Furuhama T; Naruse K; Nonaka K; Nagai Y; Yamato H; Kashima I; Ohya K; Aoki K; Mikuni-Takagaki Y J Bone Miner Metab; 2011 Jul; 29(4):422-36. PubMed ID: 21127921 [TBL] [Abstract][Full Text] [Related]
80. An experimentally validated micromechanical model of a rat vertebra under compressive loading. Tsafnat N; Wroe S J Anat; 2011 Jan; 218(1):40-6. PubMed ID: 20819113 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]