These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 32748289)
21. Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Adam-Vizi V Antioxid Redox Signal; 2005; 7(9-10):1140-9. PubMed ID: 16115017 [TBL] [Abstract][Full Text] [Related]
22. Nicotinamide nucleotide transhydrogenase is required for brain mitochondrial redox balance under hampered energy substrate metabolism and high-fat diet. Francisco A; Ronchi JA; Navarro CDC; Figueira TR; Castilho RF J Neurochem; 2018 Dec; 147(5):663-677. PubMed ID: 30281804 [TBL] [Abstract][Full Text] [Related]
23. Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Nulton-Persson AC; Starke DW; Mieyal JJ; Szweda LI Biochemistry; 2003 Apr; 42(14):4235-42. PubMed ID: 12680778 [TBL] [Abstract][Full Text] [Related]
25. Nicotinamide nucleotide transhydrogenase (NNT) regulates mitochondrial ROS and endothelial dysfunction in response to angiotensin II. Rao KNS; Shen X; Pardue S; Krzywanski DM Redox Biol; 2020 Sep; 36():101650. PubMed ID: 32763515 [TBL] [Abstract][Full Text] [Related]
26. Mitochondrial hydrogen peroxide production by pyruvate dehydrogenase and α-ketoglutarate dehydrogenase in oxidative eustress and oxidative distress. Chalifoux O; Faerman B; Mailloux RJ J Biol Chem; 2023 Dec; 299(12):105399. PubMed ID: 37898400 [TBL] [Abstract][Full Text] [Related]
27. Glutathionylation of α-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification. McLain AL; Cormier PJ; Kinter M; Szweda LI Free Radic Biol Med; 2013 Aug; 61():161-9. PubMed ID: 23567190 [TBL] [Abstract][Full Text] [Related]
28. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. Gameiro PA; Laviolette LA; Kelleher JK; Iliopoulos O; Stephanopoulos G J Biol Chem; 2013 May; 288(18):12967-77. PubMed ID: 23504317 [TBL] [Abstract][Full Text] [Related]
30. Calcium Signaling and Reactive Oxygen Species in Mitochondria. Bertero E; Maack C Circ Res; 2018 May; 122(10):1460-1478. PubMed ID: 29748369 [TBL] [Abstract][Full Text] [Related]
31. Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. Sazanov LA; Jackson JB FEBS Lett; 1994 May; 344(2-3):109-16. PubMed ID: 8187868 [TBL] [Abstract][Full Text] [Related]
32. The lack of functional nicotinamide nucleotide transhydrogenase only moderately contributes to the impairment of glucose tolerance and glucose-stimulated insulin secretion in C57BL/6J vs C57BL/6N mice. Close AF; Chae H; Jonas JC Diabetologia; 2021 Nov; 64(11):2550-2561. PubMed ID: 34448880 [TBL] [Abstract][Full Text] [Related]
34. Production of reactive oxygen species by mitochondria: central role of complex III. Chen Q; Vazquez EJ; Moghaddas S; Hoppel CL; Lesnefsky EJ J Biol Chem; 2003 Sep; 278(38):36027-31. PubMed ID: 12840017 [TBL] [Abstract][Full Text] [Related]
35. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal. Humphries KM; Szweda LI Biochemistry; 1998 Nov; 37(45):15835-41. PubMed ID: 9843389 [TBL] [Abstract][Full Text] [Related]
36. The reaction mechanism of the mitochondrial pyridine nucleotide transhydrogenase. A study utilizing arylazido-pyridine nucleotide analogues. Chen S; Guillory RJ J Biol Chem; 1984 May; 259(9):5945-53. PubMed ID: 6715379 [TBL] [Abstract][Full Text] [Related]