These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 32748324)

  • 1. 3D Printing for Bone Regeneration.
    Bandyopadhyay A; Mitra I; Bose S
    Curr Osteoporos Rep; 2020 Oct; 18(5):505-514. PubMed ID: 32748324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Materials and scaffolds in medical 3D printing and bioprinting in the context of bone regeneration.
    Heller M; Bauer HK; Goetze E; Gielisch M; Ozbolat IT; Moncal KK; Rizk E; Seitz H; Gelinsky M; Schröder HC; Wang XH; Müller WE; Al-Nawas B
    Int J Comput Dent; 2016; 19(4):301-321. PubMed ID: 28008428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printing for bone regeneration: challenges and opportunities for achieving predictability.
    Ivanovski S; Breik O; Carluccio D; Alayan J; Staples R; Vaquette C
    Periodontol 2000; 2023 Oct; 93(1):358-384. PubMed ID: 37823472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration.
    Wang Z; Wang Y; Yan J; Zhang K; Lin F; Xiang L; Deng L; Guan Z; Cui W; Zhang H
    Adv Drug Deliv Rev; 2021 Jul; 174():504-534. PubMed ID: 33991588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing.
    Wang Y; Gao M; Wang D; Sun L; Webster TJ
    Int J Nanomedicine; 2020; 15():215-226. PubMed ID: 32021175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
    Obregon F; Vaquette C; Ivanovski S; Hutmacher DW; Bertassoni LE
    J Dent Res; 2015 Sep; 94(9 Suppl):143S-52S. PubMed ID: 26124216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The presence of 3D printing in orthopedics: A clinical and material review.
    Rodriguez Colon R; Nayak VV; Parente PEL; Leucht P; Tovar N; Lin CC; Rezzadeh K; Hacquebord JH; Coelho PG; Witek L
    J Orthop Res; 2023 Mar; 41(3):601-613. PubMed ID: 35634867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Overview of 3D Printing Technologies for Soft Materials and Potential Opportunities for Lipid-based Drug Delivery Systems.
    Vithani K; Goyanes A; Jannin V; Basit AW; Gaisford S; Boyd BJ
    Pharm Res; 2018 Nov; 36(1):4. PubMed ID: 30406349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing of Textiles: Potential Roadmap to Printing with Fibers.
    Chatterjee K; Ghosh TK
    Adv Mater; 2020 Jan; 32(4):e1902086. PubMed ID: 31788860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration.
    Nayak VV; Slavin BV; Bergamo ETP; Torroni A; Runyan CM; Flores RL; Kasper FK; Young S; Coelho PG; Witek L
    Tissue Eng Part C Methods; 2023 Jul; 29(7):332-345. PubMed ID: 37463403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Bioprinting of Tissue Models with Customized Bioinks.
    Vurat MT; Ergun C; Elçin AE; Elçin YM
    Adv Exp Med Biol; 2020; 1249():67-84. PubMed ID: 32602091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Status of 3D Printing Technology for Preparing Bioceramic Materials].
    Zhang J; Li M; Tang B; Dong H; Yu Q
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 Nov; 47(6):651-658. PubMed ID: 38086723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinks-materials used in printing cells in designed 3D forms.
    Tamay DG; Hasirci N
    J Biomater Sci Polym Ed; 2021 Jun; 32(8):1072-1106. PubMed ID: 33720806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of three-dimensional printing polymer-ceramic scaffolds with enhanced compressive properties and tuneable resorption.
    Zhou Z; Cunningham E; Lennon A; McCarthy HO; Buchanan F; Dunne N
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():975-986. PubMed ID: 30274136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing: an appealing technology for the manufacturing of solid oral dosage forms.
    Pitzanti G; Mathew E; Andrews GP; Jones DS; Lamprou DA
    J Pharm Pharmacol; 2022 Oct; 74(10):1427-1449. PubMed ID: 34529072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Personalized Artificial Bone Scaffolds.
    Jariwala SH; Lewis GS; Bushman ZJ; Adair JH; Donahue HJ
    3D Print Addit Manuf; 2015 Jun; 2(2):56-64. PubMed ID: 28804734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone Morphogenetic Protein-2-Activated 3D-Printed Polylactic Acid Scaffolds to Promote Bone Regrowth and Repair.
    Yao CH; Lai YH; Chen YW; Cheng CH
    Macromol Biosci; 2020 Oct; 20(10):e2000161. PubMed ID: 32749079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translation of 3D printed materials for medical applications.
    Bandyopadhyay A; Bose S; Narayan R
    MRS Bull; 2022 Jan; 47(1):39-48. PubMed ID: 35814311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting.
    Mora-Boza A; Lopez-Donaire ML
    Adv Exp Med Biol; 2018; 1058():221-245. PubMed ID: 29691824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.