These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32748360)

  • 1. Compression behaviors of mechanically biologically treated wastes of Tianziling landfill in Hangzhou, China.
    Zhang Z; Fang Y; Wang Y; Xu H
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):43970-43986. PubMed ID: 32748360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of compression behaviors of high food waste content (HFWC) MSW and no food waste content (NFWC) MSW in China.
    Xu H; Wang JN; Zhan LT; Zhang ZY; Xu XB; Chen YM; Yao K
    Waste Manag; 2020 Feb; 103():305-313. PubMed ID: 31923839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of temperature on immediate and secondary compression of MSW with high and low food contents.
    Portelinha FHM; Correia NS; Daciolo LVP
    Waste Manag; 2020 Dec; 118():258-269. PubMed ID: 32916422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled mechanical creep and bio-compression and residual settlement in a multi-stage municipal solid waste landfill, Korea.
    Young-Seok J; Wan-Kyu Y; Sung-Phil H; Chang-Yong K
    Sci Rep; 2022 Nov; 12(1):19058. PubMed ID: 36351961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.
    Zhan LT; Xu H; Chen YM; Lan JW; Lin WA; Xu XB; He PJ
    Waste Manag; 2017 Oct; 68():307-318. PubMed ID: 28668602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory study on the hydraulic characteristics of mechanically and biologically treated waste in China.
    Zhang Z; Pan X; Fang Y; Wang Y; Zhang Y; Xu H
    Waste Manag; 2020 Feb; 102():686-697. PubMed ID: 31790927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Preliminary findings from a large-scale experiment.
    Zhan LT; Xu H; Chen YM; Lü F; Lan JW; Shao LM; Lin WA; He PJ
    Waste Manag; 2017 May; 63():27-40. PubMed ID: 28325705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process.
    Gao W; Xu W; Bian X; Chen Y
    Waste Manag; 2017 Nov; 69():202-214. PubMed ID: 28797627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance comparison of a MSW settlement prediction model in Tehran landfill.
    Tahmoorian F; Khabbaz H
    J Environ Manage; 2020 Jan; 254():109809. PubMed ID: 31780269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global void ratio of municipal solid waste for compression indices estimation.
    Pi X; Fei X; Wang Y; Sun X; Guo Y
    Waste Manag; 2023 Apr; 160():69-79. PubMed ID: 36791512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An equivalent-time-lines model for municipal solid waste based on its compression characteristics.
    Gao W; Bian X; Xu W; Chen Y
    Waste Manag; 2017 Oct; 68():292-306. PubMed ID: 28751174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the components of municipal solid waste settlement.
    Sivakumar Babu GL; Lakshmikanthan P
    Waste Manag Res; 2015 Jan; 33(1):30-8. PubMed ID: 25428429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical modelling of settlement of municipal solid waste in landfills coupled with effects of biodegradation.
    Xie Y; Xue J; Deane A
    Waste Manag; 2023 May; 163():108-121. PubMed ID: 37004460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A first-order kinetic model for simulating the aerobic degradation of municipal solid waste.
    Sun XY; Xu H; Wu BH; Shen SL; Zhan LT
    J Environ Manage; 2023 Mar; 329():117093. PubMed ID: 36549064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the reinforcement content and reinforcement scale on the shear strength characteristics of mechanically biologically treated waste.
    Wang B; Zhang Z; Xu H; Huang M; Nie C; Li T
    Environ Sci Pollut Res Int; 2022 Jul; 29(35):53496-53508. PubMed ID: 35288856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on direct shear strength characteristics of mechanically biologically treated waste.
    Zhang Z; Zhang J; Wang Q; Wang M; Nie C
    Environ Sci Pollut Res Int; 2021 Nov; 28(42):59844-59857. PubMed ID: 34146325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strength characteristics of geosynthetic reinforced mechanically biologically treated waste by triaxial test.
    Wang M; Zhang Z; Xu H; Nie C; Wang B; Huang M; Li T
    Environ Sci Pollut Res Int; 2022 Sep; 29(45):67908-67923. PubMed ID: 35524850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of depth-dependent properties of municipal solid waste using a large diameter-borehole sampling method.
    Hartwell J; Mousavi MS; Eun J; Bartelt-Hunt S
    J Air Waste Manag Assoc; 2021 Apr; 71(4):433-446. PubMed ID: 33180006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geotechnical behavior of the MSW in Tianziling landfill.
    Zhu XR; Jin JM; Fang PF
    J Zhejiang Univ Sci; 2003; 4(3):324-30. PubMed ID: 12765287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geotechnical properties of fresh municipal solid wastes with different compositions under leachate exposure.
    Xie Y; Xue J; Gnanendran CT; Xie K
    Waste Manag; 2022 Jul; 149():207-217. PubMed ID: 35752108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.