BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 32748371)

  • 21. Chronic Ethanol Exposure Disrupts Lactate and Glucose Homeostasis and Induces Dysfunction of the Astrocyte-Neuron Lactate Shuttle in the Brain.
    Lindberg D; Ho AMC; Peyton L; Choi DS
    Alcohol Clin Exp Res; 2019 Sep; 43(9):1838-1847. PubMed ID: 31237693
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retinal glial responses to optic nerve crush are attenuated in Bax-deficient mice and modulated by purinergic signaling pathways.
    Mac Nair CE; Schlamp CL; Montgomery AD; Shestopalov VI; Nickells RW
    J Neuroinflammation; 2016 Apr; 13(1):93. PubMed ID: 27126275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Park7 protects retinal ganglion cells and promotes functional preservation after optic nerve crush via regulation of the Nrf2 signaling pathway.
    Ouyang L; He T; Xing Y
    Graefes Arch Clin Exp Ophthalmol; 2023 Dec; 261(12):3489-3502. PubMed ID: 37199801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toll-like receptor-4 knockout mice are more resistant to optic nerve crush damage than wild-type mice.
    Morzaev D; Nicholson JD; Caspi T; Weiss S; Hochhauser E; Goldenberg-Cohen N
    Clin Exp Ophthalmol; 2015; 43(7):655-65. PubMed ID: 25752496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hybrid Compound SA-2 is Neuroprotective in Animal Models of Retinal Ganglion Cell Death.
    Stankowska DL; Dibas A; Li L; Zhang W; Krishnamoorthy VR; Chavala SH; Nguyen TP; Yorio T; Ellis DZ; Acharya S
    Invest Ophthalmol Vis Sci; 2019 Jul; 60(8):3064-3073. PubMed ID: 31348824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monocarboxylate transporter-dependent mechanism confers resistance to oxygen- and glucose-deprivation injury in astrocyte-neuron co-cultures.
    Gao C; Zhou L; Zhu W; Wang H; Wang R; He Y; Li Z
    Neurosci Lett; 2015 May; 594():99-104. PubMed ID: 25827488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rescue of retinal ganglion cells in optic nerve injury using cell-selective AAV mediated delivery of SIRT1.
    Ross AG; McDougald DS; Khan RS; Duong TT; Dine KE; Aravand P; Bennett J; Chavali VRM; Shindler KS
    Gene Ther; 2021 May; 28(5):256-264. PubMed ID: 33589779
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of the uniform field electroretinogram for mouse retinal ganglion cell functional analysis.
    Lagali PS; Shanmugalingam U; Baker AN; Mezey N; Smith PD; Coupland SG; Tsilfidis C
    Doc Ophthalmol; 2023 Aug; 147(1):29-43. PubMed ID: 37106219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Apoptotic Retinal Ganglion Cell Death After Optic Nerve Transection or Crush in Mice: Delayed RGC Loss With BDNF or a Caspase 3 Inhibitor.
    Sánchez-Migallón MC; Valiente-Soriano FJ; Nadal-Nicolás FM; Vidal-Sanz M; Agudo-Barriuso M
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):81-93. PubMed ID: 26780312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AAV2-mediated GRP78 Transfer Alleviates Retinal Neuronal Injury by Downregulating ER Stress and Tau Oligomer Formation.
    Ha Y; Liu W; Liu H; Zhu S; Xia F; Gerson JE; Azhar NA; Tilton RG; Motamedi M; Kayed R; Zhang W
    Invest Ophthalmol Vis Sci; 2018 Sep; 59(11):4670-4682. PubMed ID: 30267089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tumor necrosis factor alpha has an early protective effect on retinal ganglion cells after optic nerve crush.
    Mac Nair CE; Fernandes KA; Schlamp CL; Libby RT; Nickells RW
    J Neuroinflammation; 2014 Nov; 11():194. PubMed ID: 25407441
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of miRNA-21 promotes retinal ganglion cell survival and visual function by modulating Müller cell gliosis after optic nerve crush.
    Li HJ; Sun ZL; Pan YB; Sun YY; Xu MH; Feng DF
    Exp Cell Res; 2019 Feb; 375(2):10-19. PubMed ID: 30639060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activating Transcription Factor 3 (ATF3) Protects Retinal Ganglion Cells and Promotes Functional Preservation After Optic Nerve Crush.
    Kole C; Brommer B; Nakaya N; Sengupta M; Bonet-Ponce L; Zhao T; Wang C; Li W; He Z; Tomarev S
    Invest Ophthalmol Vis Sci; 2020 Feb; 61(2):31. PubMed ID: 32084268
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Susceptibility of Retinal Ganglion Cells to Optic Nerve Injury is Type Specific.
    Yang N; Young BK; Wang P; Tian N
    Cells; 2020 Mar; 9(3):. PubMed ID: 32164319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stress-induced changes in neuronal Aquaporin-9 (AQP9) in a retinal ganglion cell-line.
    Dibas A; Yang MH; Bobich J; Yorio T
    Pharmacol Res; 2007 May; 55(5):378-84. PubMed ID: 17337204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Together JUN and DDIT3 (CHOP) control retinal ganglion cell death after axonal injury.
    Syc-Mazurek SB; Fernandes KA; Wilson MP; Shrager P; Libby RT
    Mol Neurodegener; 2017 Oct; 12(1):71. PubMed ID: 28969695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RGC death in mice after optic nerve crush injury: oxidative stress and neuroprotection.
    Levkovitch-Verbin H; Harris-Cerruti C; Groner Y; Wheeler LA; Schwartz M; Yoles E
    Invest Ophthalmol Vis Sci; 2000 Dec; 41(13):4169-74. PubMed ID: 11095611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of ferroptosis promotes retina ganglion cell survival in experimental optic neuropathies.
    Guo M; Zhu Y; Shi Y; Meng X; Dong X; Zhang H; Wang X; Du M; Yan H
    Redox Biol; 2022 Dec; 58():102541. PubMed ID: 36413918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transfer of glycogen-derived lactate from astrocytes to axons via specific monocarboxylate transporters supports mouse optic nerve activity.
    Tekkök SB; Brown AM; Westenbroek R; Pellerin L; Ransom BR
    J Neurosci Res; 2005 Sep; 81(5):644-52. PubMed ID: 16015619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Valproate promotes survival of retinal ganglion cells in a rat model of optic nerve crush.
    Zhang ZZ; Gong YY; Shi YH; Zhang W; Qin XH; Wu XW
    Neuroscience; 2012 Nov; 224():282-93. PubMed ID: 22867974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.