These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 32748694)

  • 1. Light in the transcription landscape: chromatin, RNA polymerase II and splicing throughout
    Tognacca RS; Kubaczka MG; Servi L; Rodríguez FS; Godoy Herz MA; Petrillo E
    Transcription; 2020; 11(3-4):117-133. PubMed ID: 32748694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking transcription, RNA polymerase II elongation and alternative splicing.
    Giono LE; Kornblihtt AR
    Biochem J; 2020 Aug; 477(16):3091-3104. PubMed ID: 32857854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light Regulates Plant Alternative Splicing through the Control of Transcriptional Elongation.
    Godoy Herz MA; Kubaczka MG; Brzyżek G; Servi L; Krzyszton M; Simpson C; Brown J; Swiezewski S; Petrillo E; Kornblihtt AR
    Mol Cell; 2019 Mar; 73(5):1066-1074.e3. PubMed ID: 30661982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional coupling of transcription and splicing.
    Montes M; Becerra S; Sánchez-Álvarez M; Suñé C
    Gene; 2012 Jun; 501(2):104-17. PubMed ID: 22537677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling transcription and alternative splicing.
    Kornblihtt AR
    Adv Exp Med Biol; 2007; 623():175-89. PubMed ID: 18380347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reciprocal regulatory links between cotranscriptional splicing and chromatin.
    de Almeida SF; Carmo-Fonseca M
    Semin Cell Dev Biol; 2014 Aug; 32():2-10. PubMed ID: 24657193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of PARP1-mediated chromatin structural changes to transcriptional RNA polymerase II elongation and cotranscriptional splicing.
    Matveeva EA; Al-Tinawi QMH; Rouchka EC; Fondufe-Mittendorf YN
    Epigenetics Chromatin; 2019 Feb; 12(1):15. PubMed ID: 30777121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing.
    Saldi T; Cortazar MA; Sheridan RM; Bentley DL
    J Mol Biol; 2016 Jun; 428(12):2623-2635. PubMed ID: 27107644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription-driven chromatin repression of Intragenic transcription start sites.
    Nielsen M; Ard R; Leng X; Ivanov M; Kindgren P; Pelechano V; Marquardt S
    PLoS Genet; 2019 Feb; 15(2):e1007969. PubMed ID: 30707695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin, transcript elongation and alternative splicing.
    Kornblihtt AR
    Nat Struct Mol Biol; 2006 Jan; 13(1):5-7. PubMed ID: 16395314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-transcriptional regulation of alternative pre-mRNA splicing.
    Shukla S; Oberdoerffer S
    Biochim Biophys Acta; 2012 Jul; 1819(7):673-83. PubMed ID: 22326677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique and contrasting effects of light and temperature cues on plant transcriptional programs.
    Jarad M; Antoniou-Kourounioti R; Hepworth J; Qüesta JI
    Transcription; 2020; 11(3-4):134-159. PubMed ID: 33016207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative Splicing and Transcription Elongation in Plants.
    Godoy Herz MA; Kornblihtt AR
    Front Plant Sci; 2019; 10():309. PubMed ID: 30972082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription and splicing: A two-way street.
    Tellier M; Maudlin I; Murphy S
    Wiley Interdiscip Rev RNA; 2020 Sep; 11(5):e1593. PubMed ID: 32128990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depletion of Arabidopsis SC35 and SC35-like serine/arginine-rich proteins affects the transcription and splicing of a subset of genes.
    Yan Q; Xia X; Sun Z; Fang Y
    PLoS Genet; 2017 Mar; 13(3):e1006663. PubMed ID: 28273088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of alternative splicing through coupling with transcription and chromatin structure.
    Naftelberg S; Schor IE; Ast G; Kornblihtt AR
    Annu Rev Biochem; 2015; 84():165-98. PubMed ID: 26034889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing.
    Jimeno-González S; Payán-Bravo L; Muñoz-Cabello AM; Guijo M; Gutierrez G; Prado F; Reyes JC
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14840-5. PubMed ID: 26578803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The plant RNA polymerase II elongation complex: A hub coordinating transcript elongation and mRNA processing.
    Grasser M; Grasser KD
    Transcription; 2018; 9(2):117-122. PubMed ID: 28886274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging roles for RNA polymerase II CTD in Arabidopsis.
    Hajheidari M; Koncz C; Eick D
    Trends Plant Sci; 2013 Nov; 18(11):633-43. PubMed ID: 23910452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription.
    Leng X; Thomas Q; Rasmussen SH; Marquardt S
    Trends Plant Sci; 2020 Aug; 25(8):744-764. PubMed ID: 32673579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.