These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32748753)

  • 1. Optimal Model-free Approach Based on MDL and CHL for Active Brain Identification in fMRI Data Analysis.
    Jaber HA; Çankaya I; Aljobouri HK; Koçak OM; Algin O
    Curr Med Imaging; 2021; 17(3):352-365. PubMed ID: 32748753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clustering fMRI data with a robust unsupervised learning algorithm for neuroscience data mining.
    Aljobouri HK; Jaber HA; Koçak OM; Algin O; Çankaya I
    J Neurosci Methods; 2018 Apr; 299():45-54. PubMed ID: 29471065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.
    Faisan S; Thoraval L; Armspach JP; Foucher JR; Metz-Lutz MN; Heitz F
    Acad Radiol; 2005 Jan; 12(1):25-36. PubMed ID: 15691723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust growing neural gas algorithm with application in cluster analysis.
    Qin AK; Suganthan PN
    Neural Netw; 2004; 17(8-9):1135-48. PubMed ID: 15555857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models.
    Faisan S; Thoraval L; Armspach JP; Metz-Lutz MN; Heitz F
    IEEE Trans Med Imaging; 2005 Feb; 24(2):263-76. PubMed ID: 15707252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-parametric statistical test to compare clusters with applications in functional magnetic resonance imaging data.
    Fujita A; Takahashi DY; Patriota AG; Sato JR
    Stat Med; 2014 Dec; 33(28):4949-62. PubMed ID: 25185759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-free functional MRI analysis based on unsupervised clustering.
    Wismüller A; Meyer-Bäse A; Lange O; Auer D; Reiser MF; Sumners D
    J Biomed Inform; 2004 Feb; 37(1):10-8. PubMed ID: 15016382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of fMRI data using improved self-organizing mapping and spatio-temporal metric hierarchical clustering.
    Liao W; Chen H; Yang Q; Lei X
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1472-83. PubMed ID: 18815099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two exploratory data analysis methods for fMRI: unsupervised clustering versus independent component analysis.
    Meyer-Baese A; Wismueller A; Lange O
    IEEE Trans Inf Technol Biomed; 2004 Sep; 8(3):387-98. PubMed ID: 15484444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative comparison of functional MRI cluster analysis.
    Dimitriadou E; Barth M; Windischberger C; Hornik K; Moser E
    Artif Intell Med; 2004 May; 31(1):57-71. PubMed ID: 15182847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster analysis of fMRI data using dendrogram sharpening.
    Stanberry L; Nandy R; Cordes D
    Hum Brain Mapp; 2003 Dec; 20(4):201-19. PubMed ID: 14673804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finding common task-related regions in fMRI data from multiple subjects by periodogram clustering and clustering ensemble.
    Ye J; Li Y; Lazar NA; Schaeffer DJ; McDowell JE
    Stat Med; 2016 Jul; 35(15):2635-51. PubMed ID: 26875570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal-spatial mean-shift clustering analysis to improve functional MRI activation detection.
    Ai L; Xiong J
    Magn Reson Imaging; 2016 Nov; 34(9):1283-1291. PubMed ID: 27469315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging.
    Veloz A; Weinstein A; Pszczolkowski S; Hernández-García L; Olivares R; Muñoz R; Taramasco C
    Comput Intell Neurosci; 2019; 2019():5259643. PubMed ID: 32082371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adapted estimate of neural activity based on blood-oxygen-level dependent signal by a model-free spatio-temporal clustering analysis.
    Chen SC; Hsieh YJ; Tyan YC; Chuang KS; Lai JJ; Chang CC
    Phys Med; 2017 Nov; 43():6-14. PubMed ID: 29195564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional feature embedded space mapping of fMRI data.
    Hu J; Tian J; Yang L
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1014-7. PubMed ID: 17946014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of FMRI data using an integrated principal component analysis and supervised affinity propagation clustering approach.
    Zhang J; Tuo X; Yuan Z; Liao W; Chen H
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3184-96. PubMed ID: 21859596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multistep unsupervised fuzzy clustering analysis of fMRI time series.
    Fadili MJ; Ruan S; Bloyet D; Mazoyer B
    Hum Brain Mapp; 2000 Aug; 10(4):160-78. PubMed ID: 10949054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.