BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 32748843)

  • 1. Lensless Scheme for Measuring Laser Aberrations Based on Computer-Generated Holograms.
    Krasin G; Kovalev M; Stsepuro N; Ruchka P; Odinokov S
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32748843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speckle reduced lensless holographic projection from phase-only computer-generated hologram.
    Chang C; Qi Y; Wu J; Xia J; Nie S
    Opt Express; 2017 Mar; 25(6):6568-6580. PubMed ID: 28381004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of wavefront curvature using computer-generated holograms.
    Kovalev MS; Krasin GK; Odinokov SB; Solomashenko AB; Zlokazov EY
    Opt Express; 2019 Jan; 27(2):1563-1568. PubMed ID: 30696220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic memory optical system based on computer-generated Fourier holograms.
    Betin AY; Bobrinev VI; Odinokov SB; Evtikhiev NN; Starikov RS; Starikov SN; Zlokazov EY
    Appl Opt; 2013 Nov; 52(33):8142-5. PubMed ID: 24513770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive wavefront correction structured illumination holographic tomography.
    Balasubramani V; Tu HY; Lai XJ; Cheng CJ
    Sci Rep; 2019 Jul; 9(1):10489. PubMed ID: 31324823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking of Wavelength-Dependence in Holographic Wavefront Sensors Using Spatial-Spectral Filtering.
    Stsepuro N; Kovalev M; Zlokazov E; Kudryashov S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple calculation of a computer-generated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane.
    Chang C; Wu J; Qi Y; Yuan C; Nie S; Xia J
    Appl Opt; 2016 Oct; 55(28):7988-7996. PubMed ID: 27828036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.
    Betin AY; Bobrinev VI; Donchenko SS; Odinokov SB; Evtikhiev NN; Starikov RS; Starikov SN; Zlokazov EY
    Appl Opt; 2014 Oct; 53(28):6591-7. PubMed ID: 25322249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image magnification in lensless holographic projection using double-sampling Fresnel diffraction.
    Qu W; Gu H; Zhang H; Tan Q
    Appl Opt; 2015 Dec; 54(34):10018-21. PubMed ID: 26836654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full-color holographic 3D display using slice-based fractional Fourier transform combined with free-space Fresnel diffraction.
    Zhang Z; Chen S; Zheng H; Zeng Z; Gao H; Yu Y; Asundi AK
    Appl Opt; 2017 Jul; 56(20):5668-5675. PubMed ID: 29047709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient wavefront sensorless adaptive optics based on large dynamic crosstalk-free holographic modal wavefront sensing.
    Liu M; Dong B
    Opt Express; 2022 Mar; 30(6):9088-9102. PubMed ID: 35299345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DC-free on-axis holographic display using a phase-only spatial light modulator.
    Cho J; Kim S; Park S; Lee B; Kim H
    Opt Lett; 2018 Jul; 43(14):3397-3400. PubMed ID: 30004515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator.
    Micó V; Zalevsky Z; Garcia J
    Opt Lett; 2012 Dec; 37(23):4988-90. PubMed ID: 23202113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact reconstruction of a Fourier hologram for a 3D object by scaling compensation.
    Wang J; Zhang Y; Lei X; Wu Y
    Appl Opt; 2023 Apr; 62(10):2604-2609. PubMed ID: 37132817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seamless full color holographic printing method based on spatial partitioning of SLM.
    Kim Y; Stoykova E; Kang H; Hong S; Park J; Park J; Hong J
    Opt Express; 2015 Jan; 23(1):172-82. PubMed ID: 25835664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of double-phase hologram and binary amplitude encoding: holographic projection and vortex beam generation.
    Shimobaba T; Wang F; Starobrat J; Kowalczyk A; Suszek J; Ito T
    Appl Opt; 2023 Oct; 62(28):7471-7479. PubMed ID: 37855516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-based analysis of hologram imagery and aberrations. I. Hologram types and their nonchromatic aberrations.
    Latta JN
    Appl Opt; 1971 Mar; 10(3):599-608. PubMed ID: 20094496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-color computer-generated holographic near-eye display based on white light illumination.
    Yang X; Song P; Zhang H; Wang QH
    Opt Express; 2019 Dec; 27(26):38236-38249. PubMed ID: 31878594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffraction-based modeling of high-numerical-aperture in-line lensless holograms.
    Restrepo JF; Garcia-Sucerquia J
    Appl Opt; 2011 Apr; 50(12):1745-52. PubMed ID: 21509066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display.
    Pi D; Liu J; Han Y; Yu S; Xiang N
    Opt Express; 2020 Mar; 28(7):9833-9841. PubMed ID: 32225583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.