BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32748868)

  • 1. Botulinum Toxin-Chitosan Nanoparticles Prevent Arrhythmia in Experimental Rat Models.
    Sergeevichev D; Fomenko V; Strelnikov A; Dokuchaeva A; Vasilieva M; Chepeleva E; Rusakova Y; Artemenko S; Romanov A; Salakhutdinov N; Chernyavskiy A
    Mar Drugs; 2020 Aug; 18(8):. PubMed ID: 32748868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An examination of the cardiac actions of PD117,302, a κ-opioid receptor agonist.
    Pugsley MK; Saint DA; Hayes ES; Abraham S; Walker MJ
    Eur J Pharmacol; 2015 Aug; 761():330-40. PubMed ID: 26086860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [To the mechanisms of antiarrhythmic action of Allapinine].
    Vakhitova IuV; Farafontova EI; Khisamutdinova RIu; Iunusov VM; Cypasheva IP; Iunusov MS
    Bioorg Khim; 2013; 39(1):105-16. PubMed ID: 23844512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ranolazine in Cardiac Arrhythmia.
    Saad M; Mahmoud A; Elgendy IY; Richard Conti C
    Clin Cardiol; 2016 Mar; 39(3):170-8. PubMed ID: 26459200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces cardiac arrhythmias in dystrophic mice.
    Colussi C; Berni R; Rosati J; Straino S; Vitale S; Spallotta F; Baruffi S; Bocchi L; Delucchi F; Rossi S; Savi M; Rotili D; Quaini F; Macchi E; Stilli D; Musso E; Mai A; Gaetano C; Capogrossi MC
    Cardiovasc Res; 2010 Jul; 87(1):73-82. PubMed ID: 20164117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological and toxicological activity of RSD921, a novel sodium channel blocker.
    Walker MJA; Hayes ES; Saint DA; Adaikan G; Abraham S; Goldin AL; Beatch GN; MacLeod BA; Wall RA; Pugsley MK
    Biomed Pharmacother; 2018 Oct; 106():510-522. PubMed ID: 29990839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Globular chitosan prolongs the effective duration time and decreases the acute toxicity of botulinum neurotoxin after intramuscular injection in rats.
    Sergeevichev DS; Krasilnikova AA; Strelnikov AG; Fomenko VV; Salakhutdinov NF; Romanov AB; Karaskov AM; Pokushalov EA; Steinberg JS
    Toxicon; 2018 Mar; 143():90-95. PubMed ID: 29371111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of spiral wave reentry by K(+) channel blockade.
    Honjo H; Yamazaki M; Kamiya K; Kodama I
    Circ J; 2007; 71 Suppl A():A26-31. PubMed ID: 17587736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug development for treatment of cardiac arrhythmias: targeting the gap junctions.
    Wit AL; Duffy HS
    Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H16-8. PubMed ID: 17890421
    [No Abstract]   [Full Text] [Related]  

  • 10. Arctigenin, a potential anti-arrhythmic agent, inhibits aconitine-induced arrhythmia by regulating multi-ion channels.
    Zhao Z; Yin Y; Wu H; Jiang M; Lou J; Bai G; Luo G
    Cell Physiol Biochem; 2013; 32(5):1342-53. PubMed ID: 24280730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of late Na+ current, a novel target to improve diastolic function and electrical abnormalities in Dahl salt-sensitive rats.
    Chi L; Belardinelli L; Zeng A; Hirakawa R; Rajamani S; Ling H; Dhalla AK
    Am J Physiol Heart Circ Physiol; 2016 May; 310(10):H1313-20. PubMed ID: 26993228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro electrophysiological mechanisms for antiarrhythmic efficacy of resveratrol, a red wine antioxidant.
    Chen WP; Su MJ; Hung LM
    Eur J Pharmacol; 2007 Jan; 554(2-3):196-204. PubMed ID: 17107672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia.
    Schmitt N; Grunnet M; Olesen SP
    Physiol Rev; 2014 Apr; 94(2):609-53. PubMed ID: 24692356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological mechanisms for antiarrhythmic efficacy and positive inotropy of liriodenine, a natural aporphine alkaloid from Fissistigma glaucescens.
    Chang GJ; Wu MH; Wu YC; Su MJ
    Br J Pharmacol; 1996 Aug; 118(7):1571-83. PubMed ID: 8842417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of atrial fibrillation termination by rapidly unbinding Na+ channel blockers: insights from mathematical models and experimental correlates.
    Comtois P; Sakabe M; Vigmond EJ; Munoz M; Texier A; Shiroshita-Takeshita A; Nattel S
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1489-504. PubMed ID: 18676686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms and control of repolarization.
    Carmeliet E
    Eur Heart J; 1993 Nov; 14 Suppl H():3-13. PubMed ID: 8293752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broad antiarrhythmic effect of mexiletine in different arrhythmia models.
    Frommeyer G; Garthmann J; Ellermann C; Dechering DG; Kochhäuser S; Reinke F; Köbe J; Wasmer K; Eckardt L
    Europace; 2018 Aug; 20(8):1375-1381. PubMed ID: 29016765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why are some antiarrhythmic drugs proarrhythmic? Cardiac arrhythmia study by bifurcation analysis.
    Chay TR
    J Electrocardiol; 1995; 28 Suppl():191-7. PubMed ID: 8656110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple cellular electrophysiological effects of a novel antiarrhythmic furoquinoline derivative HA-7 [N-benzyl-7-methoxy-2,3,4,9-tetrahydrofuro[2,3-b]quinoline-3,4-dione] in guinea pig cardiac preparations.
    Chang GJ; Su MJ; Kuo SC; Lin TP; Lee YS
    J Pharmacol Exp Ther; 2006 Jan; 316(1):380-91. PubMed ID: 16174797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel K+ Channel Targets in Atrial Fibrillation Drug Development--Where Are We?
    El-Haou S; Ford JW; Milnes JT
    J Cardiovasc Pharmacol; 2015 Nov; 66(5):412-31. PubMed ID: 25978691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.