These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An All-on-chip Method for Rapid Neutrophil Chemotaxis Analysis Directly from a Drop of Blood. Yang K; Wu J; Zhu L; Liu Y; Zhang M; Lin F J Vis Exp; 2017 Jun; (124):. PubMed ID: 28671651 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic devices for neutrophil chemotaxis studies. Zhao W; Zhao H; Li M; Huang C J Transl Med; 2020 Apr; 18(1):168. PubMed ID: 32293474 [TBL] [Abstract][Full Text] [Related]
5. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices. Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940 [TBL] [Abstract][Full Text] [Related]
6. [Design, simulation and application of multichannel microfluidic chip for cell migration]. Li H; Yang X; Wu X; Li Z; Hong C; Liu Y; Zhu L; Yang K Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):128-138. PubMed ID: 35231974 [TBL] [Abstract][Full Text] [Related]
7. Super-Low Dose Lipopolysaccharide Dysregulates Neutrophil Migratory Decision-Making. Boribong BP; Lenzi MJ; Li L; Jones CN Front Immunol; 2019; 10():359. PubMed ID: 30915068 [TBL] [Abstract][Full Text] [Related]
8. A radial microfluidic platform for higher throughput chemotaxis studies with individual gradient control. Wu J; Kumar-Kanojia A; Hombach-Klonisch S; Klonisch T; Lin F Lab Chip; 2018 Dec; 18(24):3855-3864. PubMed ID: 30427358 [TBL] [Abstract][Full Text] [Related]
9. Chapter 15. A microfluidics-based method for chemoattractant gradients. Lin F Methods Enzymol; 2009; 461():333-47. PubMed ID: 19480926 [TBL] [Abstract][Full Text] [Related]
10. A dual-docking microfluidic cell migration assay (D Yang K; Wu J; Xu G; Xie D; Peretz-Soroka H; Santos S; Alexander M; Zhu L; Zhang M; Liu Y; Lin F Integr Biol (Camb); 2017 Apr; 9(4):303-312. PubMed ID: 28367571 [TBL] [Abstract][Full Text] [Related]
11. Neutrophil Chemotaxis in One Droplet of Blood Using Microfluidic Assays. Wang X; Irimia D Methods Mol Biol; 2018; 1749():351-360. PubMed ID: 29526009 [TBL] [Abstract][Full Text] [Related]
12. Selective and tunable gradient device for cell culture and chemotaxis study. Kim D; Lokuta MA; Huttenlocher A; Beebe DJ Lab Chip; 2009 Jun; 9(12):1797-800. PubMed ID: 19495465 [TBL] [Abstract][Full Text] [Related]
13. Establishment of a scalable microfluidic assay for characterization of population-based neutrophil chemotaxis. Grigolato F; Egholm C; Impellizzieri D; Arosio P; Boyman O Allergy; 2020 Jun; 75(6):1382-1393. PubMed ID: 31971608 [TBL] [Abstract][Full Text] [Related]
16. SiMA: A simplified migration assay for analyzing neutrophil migration. Weckmann M; Becker T; Nissen G; Pech M; Kopp MV Cytometry A; 2017 Jul; 91(7):675-685. PubMed ID: 28544679 [TBL] [Abstract][Full Text] [Related]
17. T cell chemotaxis in a simple microfluidic device. Lin F; Butcher EC Lab Chip; 2006 Nov; 6(11):1462-9. PubMed ID: 17066171 [TBL] [Abstract][Full Text] [Related]
18. Design, Fabrication, and Testing of a Microfluidic Device for Thermotaxis and Chemotaxis Assays of Sperm. Ko YJ; Maeng JH; Hwang SY; Ahn Y SLAS Technol; 2018 Dec; 23(6):507-515. PubMed ID: 29949396 [TBL] [Abstract][Full Text] [Related]
19. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621 [TBL] [Abstract][Full Text] [Related]
20. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients. Sule N; Penarete-Acosta D; Englert DL; Jayaraman A Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]