BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 32748969)

  • 1. Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease.
    Upadhyay S; Tripathi PK; Singh M; Raghavendhar S; Bhardwaj M; Patel AK
    Phytother Res; 2020 Dec; 34(12):3411-3419. PubMed ID: 32748969
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Liu H; Ye F; Sun Q; Liang H; Li C; Li S; Lu R; Huang B; Tan W; Lai L
    J Enzyme Inhib Med Chem; 2021 Dec; 36(1):497-503. PubMed ID: 33491508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re
    Karges J; Kalaj M; Gembicky M; Cohen SM
    Angew Chem Int Ed Engl; 2021 May; 60(19):10716-10723. PubMed ID: 33606889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants -
    Shree P; Mishra P; Selvaraj C; Singh SK; Chaube R; Garg N; Tripathi YB
    J Biomol Struct Dyn; 2022 Jan; 40(1):190-203. PubMed ID: 32851919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust classification-based molecular modelling of diverse chemical entities as potential SARS-CoV-2 3CL
    Adhikari N; Banerjee S; Baidya SK; Ghosh B; Jha T
    SAR QSAR Environ Res; 2021 Jun; 32(6):473-493. PubMed ID: 34011224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors.
    Bhardwaj VK; Singh R; Sharma J; Rajendran V; Purohit R; Kumar S
    J Biomol Struct Dyn; 2021 Jul; 39(10):3449-3458. PubMed ID: 32397940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Cell-Based Luciferase Complementation Assay for Identification of SARS-CoV-2 3CL
    Rawson JMO; Duchon A; Nikolaitchik OA; Pathak VK; Hu WS
    Viruses; 2021 Jan; 13(2):. PubMed ID: 33498923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 via virtual screening and biochemical evaluation.
    Guo S; Xie H; Lei Y; Liu B; Zhang L; Xu Y; Zuo Z
    Bioorg Chem; 2021 May; 110():104767. PubMed ID: 33667900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioactive Terpenes and Their Derivatives as Potential SARS-CoV-2 Proteases Inhibitors from Molecular Modeling Studies.
    Diniz LRL; Perez-Castillo Y; Elshabrawy HA; Filho CDSMB; de Sousa DP
    Biomolecules; 2021 Jan; 11(1):. PubMed ID: 33430299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Fluorescence-Based, High-Throughput SARS-CoV-2 3CL
    Froggatt HM; Heaton BE; Heaton NS
    J Virol; 2020 Oct; 94(22):. PubMed ID: 32843534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of
    Assiry AA; Bhavikatti SK; Althobaiti FA; Mohamed RN; Karobari MI
    Biomed Res Int; 2022; 2022():5870443. PubMed ID: 35707383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: an exhaustive computational screening approach.
    Bhowmick S; Saha A; Osman SM; Alasmary FA; Almutairi TM; Islam MA
    Mol Divers; 2021 Aug; 25(3):1979-1997. PubMed ID: 33844135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Learning and the Potential of Neural Networks Accelerate Molecular Screening for the Design of a New Molecule Effective against SARS-CoV-2.
    Yassine R; Makrem M; Farhat F
    Biomed Res Int; 2021; 2021():6696012. PubMed ID: 34124259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting SARS-CoV-2 Proteases and Polymerase for COVID-19 Treatment: State of the Art and Future Opportunities.
    Cannalire R; Cerchia C; Beccari AR; Di Leva FS; Summa V
    J Med Chem; 2022 Feb; 65(4):2716-2746. PubMed ID: 33186044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis and in vitro evaluation of novel SARS-CoV-2 3CL
    Stille JK; Tjutrins J; Wang G; Venegas FA; Hennecker C; Rueda AM; Sharon I; Blaine N; Miron CE; Pinus S; Labarre A; Plescia J; Burai Patrascu M; Zhang X; Wahba AS; Vlaho D; Huot MJ; Schmeing TM; Mittermaier AK; Moitessier N
    Eur J Med Chem; 2022 Feb; 229():114046. PubMed ID: 34995923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of potential plant-based inhibitor against viral proteases of SARS-CoV-2 through molecular docking, MM-PBSA binding energy calculations and molecular dynamics simulation.
    Gogoi B; Chowdhury P; Goswami N; Gogoi N; Naiya T; Chetia P; Mahanta S; Chetia D; Tanti B; Borah P; Handique PJ
    Mol Divers; 2021 Aug; 25(3):1963-1977. PubMed ID: 33856591
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Bung N; Krishnan SR; Bulusu G; Roy A
    Future Med Chem; 2021 Mar; 13(6):575-585. PubMed ID: 33590764
    [No Abstract]   [Full Text] [Related]  

  • 18. Protease inhibitors targeting the main protease and papain-like protease of coronaviruses.
    Capasso C; Nocentini A; Supuran CT
    Expert Opin Ther Pat; 2021 Apr; 31(4):309-324. PubMed ID: 33246378
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Sharma A; Goyal S; Yadav AK; Kumar P; Gupta L
    J Biomol Struct Dyn; 2022 Jan; 40(1):86-100. PubMed ID: 32896226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncovering Flexible Active Site Conformations of SARS-CoV-2 3CL Proteases through Protease Pharmacophore Clusters and COVID-19 Drug Repurposing.
    Pathak N; Chen YT; Hsu YC; Hsu NY; Kuo CJ; Tsai HP; Kang JJ; Huang CH; Chang SY; Chang YH; Liang PH; Yang JM
    ACS Nano; 2021 Jan; 15(1):857-872. PubMed ID: 33373194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.