These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 32749222)
1. Assessment of the Robustness of Convolutional Neural Networks in Labeling Noise by Using Chest X-Ray Images From Multiple Centers. Jang R; Kim N; Jang M; Lee KH; Lee SM; Lee KH; Noh HN; Seo JB JMIR Med Inform; 2020 Aug; 8(8):e18089. PubMed ID: 32749222 [TBL] [Abstract][Full Text] [Related]
2. Detection of Pneumothorax with Deep Learning Models: Learning From Radiologist Labels vs Natural Language Processing Model Generated Labels. Hallinan JTPD; Feng M; Ng D; Sia SY; Tiong VTY; Jagmohan P; Makmur A; Thian YL Acad Radiol; 2022 Sep; 29(9):1350-1358. PubMed ID: 34649780 [TBL] [Abstract][Full Text] [Related]
3. Automatic Localization and Identification of Thoracic Diseases from Chest X-rays with Deep Learning. Zhang S; Tang T; Peng X; Zhang Y; Yang W; Li W; Xin X; Zhang J; Wang W; Zhang B Curr Med Imaging; 2022; 18(13):1416-1425. PubMed ID: 35593336 [TBL] [Abstract][Full Text] [Related]
4. Optimal number of strong labels for curriculum learning with convolutional neural network to classify pulmonary abnormalities in chest radiographs. Cho Y; Park B; Lee SM; Lee KH; Seo JB; Kim N Comput Biol Med; 2021 Sep; 136():104750. PubMed ID: 34392128 [TBL] [Abstract][Full Text] [Related]
5. Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images. Behzadi-Khormouji H; Rostami H; Salehi S; Derakhshande-Rishehri T; Masoumi M; Salemi S; Keshavarz A; Gholamrezanezhad A; Assadi M; Batouli A Comput Methods Programs Biomed; 2020 Mar; 185():105162. PubMed ID: 31715332 [TBL] [Abstract][Full Text] [Related]
6. Deep learning prediction of sex on chest radiographs: a potential contributor to biased algorithms. Li D; Lin CT; Sulam J; Yi PH Emerg Radiol; 2022 Apr; 29(2):365-370. PubMed ID: 35006495 [TBL] [Abstract][Full Text] [Related]
7. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. Zech JR; Badgeley MA; Liu M; Costa AB; Titano JJ; Oermann EK PLoS Med; 2018 Nov; 15(11):e1002683. PubMed ID: 30399157 [TBL] [Abstract][Full Text] [Related]
8. Visual Transformers and Convolutional Neural Networks for Disease Classification on Radiographs: A Comparison of Performance, Sample Efficiency, and Hidden Stratification. Murphy ZR; Venkatesh K; Sulam J; Yi PH Radiol Artif Intell; 2022 Nov; 4(6):e220012. PubMed ID: 36523640 [TBL] [Abstract][Full Text] [Related]
9. Effect of Training Data Volume on Performance of Convolutional Neural Network Pneumothorax Classifiers. Thian YL; Ng DW; Hallinan JTPD; Jagmohan P; Sia SY; Mohamed JSA; Quek ST; Feng M J Digit Imaging; 2022 Aug; 35(4):881-892. PubMed ID: 35239091 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of transfer learning for enhancing tumor classification with a convolutional neural network on frozen sections. Kim YG; Kim S; Cho CE; Song IH; Lee HJ; Ahn S; Park SY; Gong G; Kim N Sci Rep; 2020 Dec; 10(1):21899. PubMed ID: 33318495 [TBL] [Abstract][Full Text] [Related]
12. Differentiation Between Anteroposterior and Posteroanterior Chest X-Ray View Position With Convolutional Neural Networks. Hosch R; Kroll L; Nensa F; Koitka S Rofo; 2021 Feb; 193(2):168-176. PubMed ID: 32615636 [TBL] [Abstract][Full Text] [Related]
13. An extremely lightweight CNN model for the diagnosis of chest radiographs in resource-constrained environments. Kumar G; Sharma N; Paul A Med Phys; 2023 Dec; 50(12):7568-7578. PubMed ID: 37665774 [TBL] [Abstract][Full Text] [Related]
14. Comparison of radiologist versus natural language processing-based image annotations for deep learning system for tuberculosis screening on chest radiographs. Yi PH; Kim TK; Lin CT Clin Imaging; 2022 Jul; 87():34-37. PubMed ID: 35483162 [TBL] [Abstract][Full Text] [Related]
15. Language model-based labeling of German thoracic radiology reports. Wollek A; Haitzer P; Sedlmeyr T; Hyska S; Rueckel J; Sabel BO; Ingrisch M; Lasser T Rofo; 2024 Apr; ():. PubMed ID: 38663428 [TBL] [Abstract][Full Text] [Related]
16. SDFN: Segmentation-based deep fusion network for thoracic disease classification in chest X-ray images. Liu H; Wang L; Nan Y; Jin F; Wang Q; Pu J Comput Med Imaging Graph; 2019 Jul; 75():66-73. PubMed ID: 31174100 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning and Binary Relevance Classification of Multiple Diseases using Chest X-Ray images Blais MA; Akhloufi MA Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2794-2797. PubMed ID: 34891829 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Lakhani P; Sundaram B Radiology; 2017 Aug; 284(2):574-582. PubMed ID: 28436741 [TBL] [Abstract][Full Text] [Related]
19. Deep multi-instance transfer learning for pneumothorax classification in chest X-ray images. Tian Y; Wang J; Yang W; Wang J; Qian D Med Phys; 2022 Jan; 49(1):231-243. PubMed ID: 34802144 [TBL] [Abstract][Full Text] [Related]
20. Chest x-ray automated triage: A semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures. Mosquera C; Diaz FN; Binder F; Rabellino JM; Benitez SE; Beresñak AD; Seehaus A; Ducrey G; Ocantos JA; Luna DR Comput Methods Programs Biomed; 2021 Jul; 206():106130. PubMed ID: 34023576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]