These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 32749330)

  • 1. Optomechanical inertial sensors.
    Hines A; Richardson L; Wisniewski H; Guzman F
    Appl Opt; 2020 Aug; 59(22):G167-G174. PubMed ID: 32749330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Chip-Scale Oscillation-Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits.
    Huang Y; Flores JGF; Li Y; Wang W; Wang D; Goldberg N; Zheng J; Yu M; Lu M; Kutzer M; Rogers D; Kwong DL; Churchill L; Wong CW
    Laser Photon Rev; 2020 May; 14(5):. PubMed ID: 34712367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact inertial sensors for measuring external disturbances of physics experiments.
    Carter JJ; Birckigt P; Gerberding O; Koehlenbeck SM
    Sci Rep; 2024 Aug; 14(1):17775. PubMed ID: 39090267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum hybrid optomechanical inertial sensing.
    Richardson L; Hines A; Schaffer A; Anderson BP; Guzman F
    Appl Opt; 2020 Aug; 59(22):G160-G166. PubMed ID: 32749329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation and Error Analysis for Optomechanical Inertial Sensors.
    Kelly P; Majji M; Guzmán F
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsically accurate sensing with an optomechanical accelerometer.
    Reschovsky BJ; Long DA; Zhou F; Bao Y; Allen RA; LeBrun TW; Gorman JJ
    Opt Express; 2022 May; 30(11):19510-19523. PubMed ID: 36221725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtogram scale high frequency nano-optomechanical resonators in water.
    Zhang H; Zhao X; Wang Y; Huang Q; Xia J
    Opt Express; 2017 Jan; 25(2):821-830. PubMed ID: 28157970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromachined Fluid Inertial Sensors.
    Liu S; Zhu R
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28216569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A low-frequency chip-scale optomechanical oscillator with 58 kHz mechanical stiffening and more than 100
    Huang Y; Flores JGF; Cai Z; Yu M; Kwong DL; Wen G; Churchill L; Wong CW
    Sci Rep; 2017 Jun; 7(1):4383. PubMed ID: 28663563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling and experiment of the suspended seismometer concept for attenuating the contribution of tilt motion in horizontal measurements.
    Matichard F; Evans M; Mittleman R; MacInnis M; Biscans S; Dooley KL; Sohier H; Lauriero A; Paris H; Koch J; Knothe P; Carbajo A; Dufort C
    Rev Sci Instrum; 2016 Jun; 87(6):065002. PubMed ID: 27370484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Chip-Based Nano-Optomechanical Accelerometer Based on Subwavelength Grating Pair and Rotated Serpentine Springs.
    Lu Q; Bai J; Wang K; Chen P; Fang W; Wang C
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29949871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultracompact optical fiber acoustic sensors based on a fiber-top spirally-suspended optomechanical microresonator.
    Yao M; Zhang Y; Ouyang X; Ping Zhang A; Tam HY; Wai PKA
    Opt Lett; 2020 Jul; 45(13):3516-3519. PubMed ID: 32630887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optomechanical lasers for inertial sensing.
    Wisniewski H; Richardson L; Hines A; Laurain A; Guzmán F
    J Opt Soc Am A Opt Image Sci Vis; 2020 Sep; 37(9):B87-B92. PubMed ID: 32902424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of quantitative evaluation between cutaneous and transosseous inertial sensors in anterior cruciate ligament deficient knee: A cadaveric study.
    Murase A; Nozaki M; Kobayashi M; Goto H; Yoshida M; Yasuma S; Takenaga T; Nagaya Y; Mizutani J; Okamoto H; Iguchi H; Otsuka T
    J Orthop Sci; 2017 Sep; 22(5):874-879. PubMed ID: 28559103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On Weakly Coupled Resonant MEMS Transducers Operating in the Modal Overlap Regime.
    Zhang H; Pandit M; Sun J; Chen D; Sobreviela G; Zhao C; Seshia AA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1448-1457. PubMed ID: 33017284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive data filtering of inertial sensors with variable bandwidth.
    Alam M; Rohac J
    Sensors (Basel); 2015 Feb; 15(2):3282-98. PubMed ID: 25648711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choice of the Miniature Inertial Optomechanical Sensor Geometric Parameters with the Help of Their Mechanical Characteristics Modelling.
    Kumanchik L; Rezinkina M; Braxmaier C
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on Stray-Capacitance Influences of Coaxial Cables in Capacitive Transducers for a Space Inertial Sensor.
    Yu J; Wang C; Wang Y; Bai Y; Hu M; Li K; Li Z; Qu S; Wu S; Zhou Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges.
    Herrera-May AL; Soler-Balcazar JC; Vázquez-Leal H; Martínez-Castillo J; Vigueras-Zuñiga MO; Aguilera-Cortés LA
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27563912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of inertial sensor sampling frequency on the accuracy of measurement parameters in rearfoot running.
    Mitschke C; Zaumseil F; Milani TL
    Comput Methods Biomech Biomed Engin; 2017 Nov; 20(14):1502-1511. PubMed ID: 28948846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.