BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32749633)

  • 1. Assessment of the tolerance to Fe, Cu and Zn of a sulfidogenic sludge generated from hydrothermal vents sediments as a basis for its application on metals precipitation.
    Jan-Roblero J; Cancino-Díaz JC; García-Mena J; Nirmalkar K; Zárate-Segura P; Ordaz A; Guerrero-Barajas C
    Mol Biol Rep; 2020 Aug; 47(8):6165-6177. PubMed ID: 32749633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tolerance of a sulfidogenic sludge to trichloroethylene at microcosms level as a basis for a long-term operation of reactors designed for its biodegradation.
    Santana-Santos MA; Ordaz A; Jan-Roblero J; Bastida González F; Zárate Segura PB; Guerrero-Barajas C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(5):461-471. PubMed ID: 30676262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High sulfate reduction efficiency in a UASB using an alternative source of sulfidogenic sludge derived from hydrothermal vent sediments.
    García-Solares SM; Ordaz A; Monroy-Hermosillo O; Jan-Roblero J; Guerrero-Barajas C
    Appl Biochem Biotechnol; 2014 Dec; 174(8):2919-40. PubMed ID: 25234397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor.
    Guerrero-Barajas C; Ordaz A; García-Solares SM; Garibay-Orijel C; Bastida-González F; Zárate-Segura PB
    J Vis Exp; 2015 Oct; (105):e52956. PubMed ID: 26555802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of gram-positive (Desulfosporosinus orientis) and gram-negative (Desulfovibrio desulfuricans) sulfate-reducing bacteria on iron sulfide mineral precipitation.
    Stanley W; Southam G
    Can J Microbiol; 2018 Sep; 64(9):629-637. PubMed ID: 30169128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria.
    Hwang SK; Jho EH
    Sci Total Environ; 2018 Sep; 635():1308-1316. PubMed ID: 29710584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of sulfate reducing bacteria in aquifer sediment by iron nanoparticles.
    Kumar N; Omoregie EO; Rose J; Masion A; Lloyd JR; Diels L; Bastiaens L
    Water Res; 2014 Mar; 51():64-72. PubMed ID: 24388832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support.
    Zhou Q; Chen Y; Yang M; Li W; Deng L
    Bioresour Technol; 2013 May; 136():413-7. PubMed ID: 23567710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of copper on sulfate reduction in bacterial consortia enriched from metal-contaminated and uncontaminated sediments.
    Jin S; Drever JI; Colberg PJ
    Environ Toxicol Chem; 2007 Feb; 26(2):225-30. PubMed ID: 17713208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor.
    Vieira BF; Couto PT; Sancinetti GP; Klein B; van Zyl D; Rodriguez RP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Aug; 51(10):793-7. PubMed ID: 27222283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.
    Zhang M; Wang H; Han X
    Chemosphere; 2016 Jul; 154():215-223. PubMed ID: 27058913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population dynamics of a single-stage sulfidogenic bioreactor treating synthetic zinc-containing waste streams.
    Dar SA; Bijmans MF; Dinkla IJ; Geurkink B; Lens PN; Dopson M
    Microb Ecol; 2009 Oct; 58(3):529-37. PubMed ID: 19322604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stepwise recycling of Fe, Cu, Zn and Ni from real electroplating sludge via coupled acidic leaching and hydrothermal and extraction routes.
    Yuxin Z; Ting S; Hongyu C; Ying Z; Zhi G; Suiyi Z; Xinfeng X; Hong Z; Yidi G; Yang H
    Environ Res; 2023 Jan; 216(Pt 1):114462. PubMed ID: 36191617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-dependent biological sulfidogenic processes for metal-laden wastewater treatment: Sulfate reduction or sulfur reduction?
    Guo J; Li Y; Sun J; Sun R; Zhou S; Duan J; Feng W; Liu G; Jiang F
    Water Res; 2021 Oct; 204():117628. PubMed ID: 34507021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron.
    Bai H; Kang Y; Quan H; Han Y; Sun J; Feng Y
    J Environ Manage; 2013 Nov; 129():350-6. PubMed ID: 23981707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity and Distribution of Heavy Metal-Resistant Bacteria in Polluted Sediments of the Araça Bay, São Sebastião (SP), and the Relationship Between Heavy Metals and Organic Matter Concentrations.
    Zampieri Bdel B; Pinto AB; Schultz L; de Oliveira MA; de Oliveira AJ
    Microb Ecol; 2016 Oct; 72(3):582-94. PubMed ID: 27480227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of the marine bacterium Pseudomonas fluorescens to an excess of heavy metals: physiological and biochemical aspects.
    Poirier I; Jean N; Guary JC; Bertrand M
    Sci Total Environ; 2008 Nov; 406(1-2):76-87. PubMed ID: 18793794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide.
    Sahinkaya E; Gungor M; Bayrakdar A; Yucesoy Z; Uyanik S
    J Hazard Mater; 2009 Nov; 171(1-3):901-6. PubMed ID: 19608339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosorption of heavy metal ions (Cu(2+), Mn (2+), Zn (2+), and Fe (3+)) from aqueous solutions using activated sludge: comparison of aerobic activated sludge with anaerobic activated sludge.
    Wu Y; Zhou J; Wen Y; Jiang L; Wu Y
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2079-93. PubMed ID: 23065403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.