These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32749755)

  • 1. Hydrogen Generation from Catalytic Reforming of Paraformaldehyde and Water by Polymeric Bifunctional Catalysts Comprising Ruthenium and Sulfonic Acid Units.
    Shen Y; Bai C; Zhan Y; Ning F; Wang H; Lv G; Zhou X
    Chempluschem; 2020 Aug; 85(8):1646-1654. PubMed ID: 32749755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen Production from Formaldehyde and Paraformaldehyde in Water under Additive-Free Conditions: Catalytic Reactions and Mechanistic Insights.
    Patra S; Kumar A; Singh SK
    Inorg Chem; 2022 Mar; 61(11):4618-4626. PubMed ID: 35258976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage.
    Himeda Y; Miyazawa S; Hirose T
    ChemSusChem; 2011 Apr; 4(4):487-93. PubMed ID: 21271682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anchoring and Upgrading Ultrafine NiPd on Room-Temperature-Synthesized Bifunctional NH
    Yan JM; Li SJ; Yi SS; Wulan BR; Zheng WT; Jiang Q
    Adv Mater; 2018 Mar; 30(12):e1703038. PubMed ID: 29411459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resource utilization of waste V
    Jin Q; Shen Y; Cai Y; Chu L; Zeng Y
    J Hazard Mater; 2020 Jan; 381():120934. PubMed ID: 31374373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen generation at ambient conditions: application in fuel cells.
    Boddien A; Loges B; Junge H; Beller M
    ChemSusChem; 2008; 1(8-9):751-8. PubMed ID: 18686291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unusually large tunneling effect on highly efficient generation of hydrogen and hydrogen isotopes in pH-selective decomposition of formic acid catalyzed by a heterodinuclear iridium-ruthenium complex in water.
    Fukuzumi S; Kobayashi T; Suenobu T
    J Am Chem Soc; 2010 Feb; 132(5):1496-7. PubMed ID: 20085352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen generation from formic acid decomposition by ruthenium carbonyl complexes. Tetraruthenium dodecacarbonyl tetrahydride as an active intermediate.
    Czaun M; Goeppert A; May R; Haiges R; Prakash GK; Olah GA
    ChemSusChem; 2011 Sep; 4(9):1241-8. PubMed ID: 21404444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution.
    Fukuzumi S; Kobayashi T; Suenobu T
    ChemSusChem; 2008; 1(10):827-34. PubMed ID: 18846597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3.
    Sanchez-Sanchez MC; Navarro Yerga RM; Kondarides DI; Verykios XE; Fierro JL
    J Phys Chem A; 2010 Mar; 114(11):3873-82. PubMed ID: 19824680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Active Carbon Supported Pd-Ag Nanofacets Catalysts for Hydrogen Production from HCOOH.
    Wang W; He T; Liu X; He W; Cong H; Shen Y; Yan L; Zhang X; Zhang J; Zhou X
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20839-48. PubMed ID: 27454194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen Production from Formic Acid and Formaldehyde over Ruthenium Catalysts in Water.
    Patra S; Singh SK
    Inorg Chem; 2020 Apr; 59(7):4234-4243. PubMed ID: 32207936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts.
    Giannakakis G; Flytzani-Stephanopoulos M; Sykes ECH
    Acc Chem Res; 2019 Jan; 52(1):237-247. PubMed ID: 30540456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards the design of novel boron- and nitrogen-substituted ammonia-borane and bifunctional arene ruthenium catalysts for hydrogen storage.
    Bandaru S; English NJ; Phillips AD; MacElroy JM
    J Comput Chem; 2014 May; 35(12):891-903. PubMed ID: 24497325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective and mild hydrogen production using water and formaldehyde.
    Heim LE; Schlörer NE; Choi JH; Prechtl MH
    Nat Commun; 2014 Apr; 5():3621. PubMed ID: 24710125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ruthenium-Catalyzed Methylation of Amines with Paraformaldehyde in Water under Mild Conditions.
    van der Waals D; Heim LE; Gedig C; Herbrik F; Vallazza S; Prechtl MH
    ChemSusChem; 2016 Sep; 9(17):2343-7. PubMed ID: 27491504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron-catalyzed hydrogen production from formic acid.
    Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M
    J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogenation of CO
    Gelman-Tropp S; Kirillov E; Hey-Hawkins E; Gelman D
    Chemistry; 2023 Nov; 29(63):e202301915. PubMed ID: 37602815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.