These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 32750195)
21. Xenobiotic transcription factors CncC and maf regulate expression of CYP321A16 and CYP332A1 that mediate chlorpyrifos resistance in Spodoptera exigua. Bo H; Miaomiao R; Jianfeng F; Sufang H; Xia W; Elzaki MEA; Chris B; Palli SR; Jianya S J Hazard Mater; 2020 Nov; 398():122971. PubMed ID: 32512455 [TBL] [Abstract][Full Text] [Related]
22. Transcriptomics and metagenomics of common cutworm (Spodoptera litura) and fall armyworm (Spodoptera frugiperda) demonstrate differences in detoxification and development. Tang R; Liu F; Lan Y; Wang J; Wang L; Li J; Liu X; Fan Z; Guo T; Yue B BMC Genomics; 2022 May; 23(1):388. PubMed ID: 35596140 [TBL] [Abstract][Full Text] [Related]
23. Homologs to Cry toxin receptor genes in a de novo transcriptome and their altered expression in resistant Spodoptera litura larvae. Gong L; Wang H; Qi J; Han L; Hu M; Jurat-Fuentes JL J Invertebr Pathol; 2015 Jul; 129():1-6. PubMed ID: 25981133 [TBL] [Abstract][Full Text] [Related]
24. Identification and Characterization of CYP9A40 from the Tobacco Cutworm Moth (Spodoptera litura), a Cytochrome P450 Gene Induced by Plant Allelochemicals and Insecticides. Wang RL; Staehelin C; Xia QQ; Su YJ; Zeng RS Int J Mol Sci; 2015 Sep; 16(9):22606-20. PubMed ID: 26393579 [TBL] [Abstract][Full Text] [Related]
25. Analyses of microRNAs and transcriptomes in the midgut of Spodoptera litura feeding on Brassica juncea. Zou XP; Lin YG; Cen YJ; Ma K; Qiu BB; Feng QL; Zheng SC Insect Sci; 2021 Apr; 28(2):533-547. PubMed ID: 32166878 [TBL] [Abstract][Full Text] [Related]
26. CYP321A Subfamily P450s Contribute to the Detoxification of Phytochemicals and Pyrethroids in Xiao T; Wang W; Deng M; Yang Z; Peng H; Huang Z; Sun Z; Lu K J Agric Food Chem; 2023 Oct; 71(41):14989-15002. PubMed ID: 37792742 [TBL] [Abstract][Full Text] [Related]
27. Comparative study of two thioredoxins from common cutworm (Spodoptera litura): cloning, expression, and functional characterization. Kang T; Wan H; Zhang Y; Shakeel M; Lu Y; You H; Lee KS; Jin BR; Li J Comp Biochem Physiol B Biochem Mol Biol; 2015 Apr; 182():47-54. PubMed ID: 25542738 [TBL] [Abstract][Full Text] [Related]
28. Gene cloning, expression, and function analysis of SpL14-3-3ΞΆ in Spodoptera litura and its response to the entomopathogenic fungus Nomuraea rileyi. Feng E; Chen H; Li Y; Jiang W; Wang Z; Yin Y Comp Biochem Physiol B Biochem Mol Biol; 2014; 172-173():49-56. PubMed ID: 24747013 [TBL] [Abstract][Full Text] [Related]
29. A Malpighian Tubule-Specific P450 Gene Li J; Yan K; Jin L; Xu P; Pan Y; Shang Q J Agric Food Chem; 2024 Jul; 72(28):15624-15632. PubMed ID: 38952111 [TBL] [Abstract][Full Text] [Related]
30. Toxicity and sublethal effects of fluralaner on Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Liu D; Jia ZQ; Peng YC; Sheng CW; Tang T; Xu L; Han ZJ; Zhao CQ Pestic Biochem Physiol; 2018 Nov; 152():8-16. PubMed ID: 30497715 [TBL] [Abstract][Full Text] [Related]
31. Insecticides induce the co-expression of glutathione S-transferases through ROS/CncC pathway in Spodoptera exigua. Hu B; Hu S; Huang H; Wei Q; Ren M; Huang S; Tian X; Su J Pestic Biochem Physiol; 2019 Mar; 155():58-71. PubMed ID: 30857628 [TBL] [Abstract][Full Text] [Related]
32. Identification and detection of the V1848I indoxacarb resistance mutation in the beet armyworm, Spodoptera exigua. Zhang X; Zhang R; Yu M; Liu R; Liu N; Teng H; Pei Y; Hu Z; Zuo Y Pestic Biochem Physiol; 2024 Aug; 203():105991. PubMed ID: 39084768 [TBL] [Abstract][Full Text] [Related]
33. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Sang S; Shu B; Yi X; Liu J; Hu M; Zhong G Pest Manag Sci; 2016 May; 72(5):922-8. PubMed ID: 26118543 [TBL] [Abstract][Full Text] [Related]
34. Transcriptomic analysis of the testicular fusion in Spodoptera litura. Chen Y; Ou J; Liu Y; Wu Q; Wen L; Zheng S; Li S; Feng Q; Liu L BMC Genomics; 2020 Feb; 21(1):171. PubMed ID: 32075574 [TBL] [Abstract][Full Text] [Related]
35. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification. Wang RL; Xia QQ; Baerson SR; Ren Y; Wang J; Su YJ; Zheng SC; Zeng RS J Insect Physiol; 2015 Apr; 75():54-62. PubMed ID: 25783953 [TBL] [Abstract][Full Text] [Related]
36. Transcription factors, CncC and Maf, regulate expression of CYP6BQ genes responsible for deltamethrin resistance in Tribolium castaneum. Kalsi M; Palli SR Insect Biochem Mol Biol; 2015 Oct; 65():47-56. PubMed ID: 26255690 [TBL] [Abstract][Full Text] [Related]
37. Effects of different insecticides on transcripts of key genes in CncC pathway and detoxification genes in Helicoverpa armigera. Wu P; Zheng J; Huang Y; Zhang Y; Qiu L Pestic Biochem Physiol; 2023 Sep; 195():105541. PubMed ID: 37666612 [TBL] [Abstract][Full Text] [Related]
38. Regulating resistance: CncC:Maf, antioxidant response elements and the overexpression of detoxification genes in insecticide resistance. Wilding CS Curr Opin Insect Sci; 2018 Jun; 27():89-96. PubMed ID: 30025640 [TBL] [Abstract][Full Text] [Related]
39. Lack of cross-resistance to indoxacarb in insecticide-resistant Spodoptera frugiperda (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Yponomeutidae). Yu SJ; McCord E Pest Manag Sci; 2007 Jan; 63(1):63-7. PubMed ID: 17089332 [TBL] [Abstract][Full Text] [Related]
40. Nuclear receptors potentially regulate phytochemical detoxification in Spodoptera litura. Yang Z; Xiao T; Deng M; Wang W; Peng H; Lu K Pestic Biochem Physiol; 2023 May; 192():105417. PubMed ID: 37105640 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]