These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32750603)

  • 21. Synaptic and nonsynaptic plasticity approximating probabilistic inference.
    Tully PJ; Hennig MH; Lansner A
    Front Synaptic Neurosci; 2014; 6():8. PubMed ID: 24782758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distributed Bayesian Computation and Self-Organized Learning in Sheets of Spiking Neurons with Local Lateral Inhibition.
    Bill J; Buesing L; Habenschuss S; Nessler B; Maass W; Legenstein R
    PLoS One; 2015; 10(8):e0134356. PubMed ID: 26284370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spike timing-dependent plasticity: a Hebbian learning rule.
    Caporale N; Dan Y
    Annu Rev Neurosci; 2008; 31():25-46. PubMed ID: 18275283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural plasticity on an accelerated analog neuromorphic hardware system.
    Billaudelle S; Cramer B; Petrovici MA; Schreiber K; Kappel D; Schemmel J; Meier K
    Neural Netw; 2021 Jan; 133():11-20. PubMed ID: 33091719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Network capacity analysis for latent attractor computation.
    Doboli S; Minai AA
    Network; 2003 May; 14(2):273-302. PubMed ID: 12790185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Energy efficient synaptic plasticity.
    Li HL; van Rossum MC
    Elife; 2020 Feb; 9():. PubMed ID: 32053106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Passive dendritic integration heavily affects spiking dynamics of recurrent networks.
    Ascoli GA
    Neural Netw; 2003; 16(5-6):657-63. PubMed ID: 12850020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast learning without synaptic plasticity in spiking neural networks.
    Subramoney A; Bellec G; Scherr F; Legenstein R; Maass W
    Sci Rep; 2024 Apr; 14(1):8557. PubMed ID: 38609429
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control.
    Schweighofer N; Doya K; Lay F
    Neuroscience; 2001; 103(1):35-50. PubMed ID: 11311786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity.
    Srinivasa N; Cho Y
    Front Comput Neurosci; 2014; 8():159. PubMed ID: 25566045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unsupervised Spiking Neural Network with Dynamic Learning of Inhibitory Neurons.
    Yang G; Lee W; Seo Y; Lee C; Seok W; Park J; Sim D; Park C
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Presynaptic inhibition rapidly stabilises recurrent excitation in the face of plasticity.
    Naumann LB; Sprekeler H
    PLoS Comput Biol; 2020 Aug; 16(8):e1008118. PubMed ID: 32764742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks.
    Allred JM; Roy K
    Front Neurosci; 2020; 14():7. PubMed ID: 32063827
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasticity in an electrosensory system. III. Contrasting properties of spatially segregated dendritic inputs.
    Bastian J
    J Neurophysiol; 1998 Apr; 79(4):1839-57. PubMed ID: 9535952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 0.086-mm
    Frenkel C; Lefebvre M; Legat JD; Bol D
    IEEE Trans Biomed Circuits Syst; 2019 Feb; 13(1):145-158. PubMed ID: 30418919
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hardware-amenable structural learning for spike-based pattern classification using a simple model of active dendrites.
    Hussain S; Liu SC; Basu A
    Neural Comput; 2015 Apr; 27(4):845-97. PubMed ID: 25734494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dendritic normalisation improves learning in sparsely connected artificial neural networks.
    Bird AD; Jedlicka P; Cuntz H
    PLoS Comput Biol; 2021 Aug; 17(8):e1009202. PubMed ID: 34370727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.