These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32750656)

  • 1. Comparative study of luminescence and chemiluminescence in hydrodynamic cavitating flows and quantitative determination of hydroxyl radicals production.
    Perrin L; Colombet D; Ayela F
    Ultrason Sonochem; 2021 Jan; 70():105277. PubMed ID: 32750656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization and quantification of radical production in cavitating flows with luminol chemiluminescent reactions.
    Podbevšek D; Colombet D; Ayela F; Ledoux G
    Ultrason Sonochem; 2021 Mar; 71():105370. PubMed ID: 33130383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of chemiluminescence induced by hydrodynamic cavitation in microchannels.
    Podbevsek D; Colombet D; Ledoux G; Ayela F
    Ultrason Sonochem; 2018 May; 43():175-183. PubMed ID: 29555273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of hydrodynamic cavitation induced reactive oxygen species production in microchannels via chemiluminescent luminol oxidation reactions.
    Podbevšek D; Ledoux G; Dular M
    Water Res; 2022 Jul; 220():118628. PubMed ID: 35640501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic cavitation for micropollutant degradation in water - Correlation of bisphenol A degradation with fluid mechanical properties.
    Deggelmann M; Nöpel JA; Rüdiger F; Paustian D; Braeutigam P
    Ultrason Sonochem; 2022 Feb; 83():105950. PubMed ID: 35151987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Lateral Roughness Element Implementation and Working Fluid Alteration to Intensify Hydrodynamic Cavitating Flows on a Chip for Energy Harvesting.
    Gevari MT; Shafaghi AH; Villanueva LG; Ghorbani M; Koşar A
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31906037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics simulation of luminol chemiluminescence based on quantitative analysis of photons generated in electrochemical oxidation.
    Koizumi Y; Nosaka Y
    J Phys Chem A; 2013 Aug; 117(33):7705-11. PubMed ID: 23879304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Luminol-enhanced chemiluminescence of rabbit polymorphonuclear leukocytes: the nature of oxidants that directly induce luminol oxidation].
    Roshchupkin DI; Belakina NS; Murina MA
    Biofizika; 2006; 51(1):99-107. PubMed ID: 16521559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Comparative Study of Cavitation Characteristics of Nano-fluid and Deionized Water in Micro-channels.
    Li T; Liu B; Zhou J; Xi W; Huai X; Zhang H
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32188128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Visualization of Free Radicals at Single Oxygen Bubbles using Chemiluminescence.
    Xu Y; Liu K; Jin R; Jiang D; Fang D
    Chem Asian J; 2021 Dec; 16(24):4049-4052. PubMed ID: 34658163
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number.
    Soyama H
    Ultrason Sonochem; 2021 Mar; 71():105389. PubMed ID: 33221624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic emission from cavitating solutions: implications for the mechanisms of sonochemical reactions.
    Price GJ; Ashokkumar M; Hodnett M; Zequiri B; Grieser F
    J Phys Chem B; 2005 Sep; 109(38):17799-801. PubMed ID: 16853282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation.
    Didenko YT; Suslick KS
    Nature; 2002 Jul; 418(6896):394-7. PubMed ID: 12140551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Determination of antioxidation of the extract from Chinese medicine Morinda officinalis How by flow injection chemiluminescence and spectroscopy].
    Wu YJ; Shi J; Qu LB; Li FF; Li XJ; Wu YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Sep; 26(9):1688-91. PubMed ID: 17112048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of dioxygen on luminol chemiluminescence.
    Baj S; Krawczyk T; Staszewska K
    Luminescence; 2009; 24(5):348-54. PubMed ID: 19294631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A demonstration that O2- is a crucial intermediate in the high quantum yield luminescence of luminol.
    Miller EK; Fridovich I
    J Free Radic Biol Med; 1986; 2(2):107-10. PubMed ID: 3029206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow-injection chemiluminescence method for the determination of chloramphenicol based on luminol-sodium periodate order-transform second-chemiluminescence reaction.
    Zhuang YF; Zhu SN; Wei W; Li JL
    Luminescence; 2011; 26(6):696-702. PubMed ID: 21504040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification.
    Ge M; Sun C; Zhang G; Coutier-Delgosha O; Fan D
    Ultrason Sonochem; 2022 May; 86():106035. PubMed ID: 35580542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characteristics of luminol chemiluminescence induced by the catalytic action of myeloperoxidase].
    Govorova NIu; Lyzlova SN; Sharonov SN; Iankovskiĭ OIu
    Biokhimiia; 1987 Oct; 52(10):1670-6. PubMed ID: 2827790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyl radical involvement in the luminol chemiluminescence from the reaction of arachidonic acid with sheep vesicular gland microsomes.
    O'Brien PJ; Hulett LG
    Prostaglandins; 1980 May; 19(5):683-91. PubMed ID: 6775351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.