BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32750856)

  • 1. Group Sparse Joint Non-Negative Matrix Factorization on Orthogonal Subspace for Multi-Modal Imaging Genetics Data Analysis.
    Peng P; Zhang Y; Ju Y; Wang K; Li G; Calhoun VD; Wang YP
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):479-490. PubMed ID: 32750856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of Imaging (epi)Genomics Data for the Study of Schizophrenia Using Group Sparse Joint Nonnegative Matrix Factorization.
    Wang M; Huang TZ; Fang J; Calhoun VD; Wang YP
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1671-1681. PubMed ID: 30762565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced neuroimaging genetics using multi-view non-negative matrix factorization with sparsity and prior knowledge.
    Won JH; Youn J; Park H
    Med Image Anal; 2022 Apr; 77():102378. PubMed ID: 35124368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Biomarkers of Alzheimer's Disease Based on Multi-constrained Uncertainty-Aware Adaptive Sparse Multi-view Canonical Correlation Analysis.
    Wang W; Kong W; Wang S; Wei K
    J Mol Neurosci; 2022 Apr; 72(4):841-865. PubMed ID: 35080765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of Imaging Genomics Data for the Study of Alzheimer's Disease Using Joint-Connectivity-Based Sparse Nonnegative Matrix Factorization.
    Wei K; Kong W; Wang S
    J Mol Neurosci; 2022 Feb; 72(2):255-272. PubMed ID: 34410569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correspondence between fMRI and SNP data by group sparse canonical correlation analysis.
    Lin D; Calhoun VD; Wang YP
    Med Image Anal; 2014 Aug; 18(6):891-902. PubMed ID: 24247004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Latent Gaussian Copula Model for Mixed Data Analysis in Brain Imaging Genetics.
    Zhang A; Fang J; Hu W; Calhoun VD; Wang YP
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1350-1360. PubMed ID: 31689199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of SNPs-FMRI-methylation data with sparse multi-CCA for schizophrenia study.
    Wenxing Hu ; Dongdong Lin ; Calhoun VD; Yu-Ping Wang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3310-3313. PubMed ID: 28269013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Modal Imaging Genetics Data Fusion via a Hypergraph-Based Manifold Regularization: Application to Schizophrenia Study.
    Zhang Y; Zhang H; Xiao L; Bai Y; Calhoun VD; Wang YP
    IEEE Trans Med Imaging; 2022 Sep; 41(9):2263-2272. PubMed ID: 35320094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canonical Correlation Analysis of Imaging Genetics Data Based on Statistical Independence and Structural Sparsity.
    Zhang Y; Peng P; Ju Y; Li G; Calhoun VD; Wang YP
    IEEE J Biomed Health Inform; 2020 Sep; 24(9):2621-2629. PubMed ID: 32071012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Independent vector analysis for common subspace analysis: Application to multi-subject fMRI data yields meaningful subgroups of schizophrenia.
    Long Q; Bhinge S; Calhoun VD; Adali T
    Neuroimage; 2020 Aug; 216():116872. PubMed ID: 32353485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint Sparse Collaborative Regression on Imaging Genetics Study of Schizophrenia.
    Song X; Li R; Wang K; Bai Y; Xiao Y; Wang YP
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1137-1146. PubMed ID: 35503837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-task learning based structured sparse canonical correlation analysis for brain imaging genetics.
    Kim M; Min EJ; Liu K; Yan J; Saykin AJ; Moore JH; Long Q; Shen L
    Med Image Anal; 2022 Feb; 76():102297. PubMed ID: 34871929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint-Connectivity-Based Sparse Canonical Correlation Analysis of Imaging Genetics for Detecting Biomarkers of Parkinson's Disease.
    Kim M; Won JH; Youn J; Park H
    IEEE Trans Med Imaging; 2020 Jan; 39(1):23-34. PubMed ID: 31144631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.
    Xie J; Douglas PK; Wu YN; Brody AL; Anderson AE
    J Neurosci Methods; 2017 Apr; 282():81-94. PubMed ID: 28322859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse deep neural networks on imaging genetics for schizophrenia case-control classification.
    Chen J; Li X; Calhoun VD; Turner JA; van Erp TGM; Wang L; Andreassen OA; Agartz I; Westlye LT; Jönsson E; Ford JM; Mathalon DH; Macciardi F; O'Leary DS; Liu J; Ji S
    Hum Brain Mapp; 2021 Jun; 42(8):2556-2568. PubMed ID: 33724588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identify Consistent Cross-Modality Imaging Genetic Patterns via Discriminant Sparse Canonical Correlation Analysis.
    Wang M; Shao W; Hao X; Shen L; Zhang D
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(4):1549-1561. PubMed ID: 31581090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Associating brain imaging phenotypes and genetic in Alzheimer's disease via JSCCA approach with autocorrelation constraints.
    Wei K; Kong W; Wang S
    Med Biol Eng Comput; 2022 Jan; 60(1):95-108. PubMed ID: 34714488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized Combination of Multiple Graphs With Application to the Integration of Brain Imaging and (epi)Genomics Data.
    Bai Y; Pascal Z; Calhoun V; Wang YP
    IEEE Trans Med Imaging; 2020 Jun; 39(6):1801-1811. PubMed ID: 31825864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-task SCCA method for brain imaging genetics and its application in neurodegenerative diseases.
    Zhang X; Hao Y; Zhang J; Ji Y; Zou S; Zhao S; Xie S; Du L
    Comput Methods Programs Biomed; 2023 Apr; 232():107450. PubMed ID: 36905750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.