BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32750879)

  • 1. An Improved Topology Prediction of Alpha-Helical Transmembrane Protein Based on Deep Multi-Scale Convolutional Neural Network.
    Yang Y; Yu J; Liu Z; Wang X; Wang H; Ma Z; Xu D
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):295-304. PubMed ID: 32750879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary and Topological Structural Merge Prediction of Alpha-Helical Transmembrane Proteins Using a Hybrid Model Based on Hidden Markov and Long Short-Term Memory Neural Networks.
    Gao T; Zhao Y; Zhang L; Wang H
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IMPContact: An Interhelical Residue Contact Prediction Method.
    Fang C; Jia Y; Hu L; Lu Y; Wang H
    Biomed Res Int; 2020; 2020():4569037. PubMed ID: 32309431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TMPSS: A Deep Learning-Based Predictor for Secondary Structure and Topology Structure Prediction of Alpha-Helical Transmembrane Proteins.
    Liu Z; Gong Y; Bao Y; Guo Y; Wang H; Lin GN
    Front Bioeng Biotechnol; 2020; 8():629937. PubMed ID: 33569377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topology Prediction Improvement of α-helical Transmembrane Proteins Through Helix-tail Modeling and Multiscale Deep Learning Fusion.
    Feng SH; Zhang WX; Yang J; Yang Y; Shen HB
    J Mol Biol; 2020 Feb; 432(4):1279-1296. PubMed ID: 31870850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNSS2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures.
    Guo Z; Hou J; Cheng J
    Proteins; 2021 Feb; 89(2):207-217. PubMed ID: 32893403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving transmembrane protein consensus topology prediction using inter-helical interaction.
    Wang H; Zhang C; Shi X; Zhang L; Zhou Y
    Biochim Biophys Acta; 2012 Nov; 1818(11):2679-86. PubMed ID: 22683598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BetAware-Deep: An Accurate Web Server for Discrimination and Topology Prediction of Prokaryotic Transmembrane β-barrel Proteins.
    Madeo G; Savojardo C; Martelli PL; Casadio R
    J Mol Biol; 2021 May; 433(11):166729. PubMed ID: 33972021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Sequential Segment Based Alpha-Helical Transmembrane Protein Alignment Method.
    Wang H; Wang J; Zhang L; Sun P; Du N; Li Y
    Int J Biol Sci; 2018; 14(8):901-906. PubMed ID: 29989071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane protein alignment and fold recognition based on predicted topology.
    Wang H; He Z; Zhang C; Zhang L; Xu D
    PLoS One; 2013; 8(7):e69744. PubMed ID: 23894534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-protein interaction site prediction through combining local and global features with deep neural networks.
    Zeng M; Zhang F; Wu FX; Li Y; Wang J; Li M
    Bioinformatics; 2020 Feb; 36(4):1114-1120. PubMed ID: 31593229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrating multi-network topology for gene function prediction using deep neural networks.
    Peng J; Xue H; Wei Z; Tuncali I; Hao J; Shang X
    Brief Bioinform; 2021 Mar; 22(2):2096-2105. PubMed ID: 32249297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the prediction of DNA-protein binding by integrating multi-scale dense convolutional network with fault-tolerant coding.
    Yin YH; Shen LC; Jiang Y; Gao S; Song J; Yu DJ
    Anal Biochem; 2022 Nov; 656():114878. PubMed ID: 36049552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the topology prediction of α-helical transmembrane proteins with deep transfer learning.
    Wang L; Zhong H; Xue Z; Wang Y
    Comput Struct Biotechnol J; 2022; 20():1993-2000. PubMed ID: 35521551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multitask Deep-Learning Method for Predicting Membrane Associations and Secondary Structures of Proteins.
    Li B; Mendenhall J; Capra JA; Meiler J
    J Proteome Res; 2021 Aug; 20(8):4089-4100. PubMed ID: 34236204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment.
    Fukuda H; Tomii K
    BMC Bioinformatics; 2020 Jan; 21(1):10. PubMed ID: 31918654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of 8-state protein secondary structures by a novel deep learning architecture.
    Zhang B; Li J; Lü Q
    BMC Bioinformatics; 2018 Aug; 19(1):293. PubMed ID: 30075707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks.
    Li Y; Hu J; Zhang C; Yu DJ; Zhang Y
    Bioinformatics; 2019 Nov; 35(22):4647-4655. PubMed ID: 31070716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction.
    Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J
    BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.