These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32750893)

  • 1. Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data.
    Liu C; Cao W; Wu S; Shen W; Jiang D; Yu Z; Wong HS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1193-1202. PubMed ID: 32750893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cancer subtype identification by consensus guided graph autoencoders.
    Liang C; Shang M; Luo J
    Bioinformatics; 2021 Dec; 37(24):4779-4786. PubMed ID: 34289034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.
    Zhu S; Wang W; Fang W; Cui M
    Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NEMO: cancer subtyping by integration of partial multi-omic data.
    Rappoport N; Shamir R
    Bioinformatics; 2019 Sep; 35(18):3348-3356. PubMed ID: 30698637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convex Multi-View Clustering Via Robust Low Rank Approximation With Application to Multi-Omic Data.
    Shetta O; Niranjan M; Dasmahapatra S
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3340-3352. PubMed ID: 34705655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consensus clustering applied to multi-omics disease subtyping.
    Brière G; Darbo É; Thébault P; Uricaru R
    BMC Bioinformatics; 2021 Jul; 22(1):361. PubMed ID: 34229612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data.
    Yang H; Chen R; Li D; Wang Z
    Bioinformatics; 2021 Aug; 37(16):2231-2237. PubMed ID: 33599254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust clustering of noisy high-dimensional gene expression data for patients subtyping.
    Coretto P; Serra A; Tagliaferri R
    Bioinformatics; 2018 Dec; 34(23):4064-4072. PubMed ID: 29939219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-view subspace clustering via adaptive graph learning and late fusion alignment.
    Tang C; Sun K; Tang C; Zheng X; Liu X; Huang JJ; Zhang W
    Neural Netw; 2023 Aug; 165():333-343. PubMed ID: 37327580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarity Fusion via Exploiting High Order Proximity for Cancer Subtyping.
    Chen J; Rong W; Tao G; Cai H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):658-667. PubMed ID: 34971537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms.
    Rintala TJ; Fortino V
    PLoS Comput Biol; 2024 Aug; 20(8):e1012275. PubMed ID: 39102448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks.
    Wang J; Liao N; Du X; Chen Q; Wei B
    BMC Genomics; 2024 Jan; 25(1):86. PubMed ID: 38254021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering.
    Lu Y; Yu Z; Wang Y; Ma Z; Wong KC; Li X
    Bioinformatics; 2022 May; 38(11):3020-3028. PubMed ID: 35451457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway-based deep clustering for molecular subtyping of cancer.
    Mallavarapu T; Hao J; Kim Y; Oh JH; Kang M
    Methods; 2020 Feb; 173():24-31. PubMed ID: 31247294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
    Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hierarchical clustering and data fusion approach for disease subtype discovery.
    Pfeifer B; Schimek MG
    J Biomed Inform; 2021 Jan; 113():103636. PubMed ID: 33271342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous discovery of cancer subtypes and subtype features by molecular data integration.
    Le Van T; van Leeuwen M; Carolina Fierro A; De Maeyer D; Van den Eynden J; Verbeke L; De Raedt L; Marchal K; Nijssen S
    Bioinformatics; 2016 Sep; 32(17):i445-i454. PubMed ID: 27587661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-View Spectral Clustering Based on Multi-Smooth Representation Fusion for Cancer Subtype Prediction.
    Liu J; Ge S; Cheng Y; Wang X
    Front Genet; 2021; 12():718915. PubMed ID: 34552619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MONET: Multi-omic module discovery by omic selection.
    Rappoport N; Safra R; Shamir R
    PLoS Comput Biol; 2020 Sep; 16(9):e1008182. PubMed ID: 32931516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.